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Abstract 

The aim of this study is to obtain fixed points by adopting the approach of extended C
´ 

iric´ contraction 
mapping in the notion of complete quasi-partial b-metric space. Furthermore, we have extended the Bota’s 
Theorem and es- tablished the corresponding fixed point results in the setting of quasi-partial-b metric 
space. Our result is supported with a suitable example. 
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1 Introduction and Preliminaries 

Metric fixed point theory was first developed by the renowned mathematician Ba- nach [1] who 
commenced the pivotal result named Banach Contraction Principle. This result has an extensive 
application in finding the unique solution of certain integral equation. i.e., Consider a self 
mapping S on a non-empty set U . Let d be a complete metric on U. If there exists a constant ρ ∈ 
[0, 1) s. t. 

d(Sξ, Sν) ≤ ρd(ξ, ν) for all ξ, ν ∈ U, 

then S possesses a unique fixed point in X. Many researchers defined the various other forms of 
new contractive conditions and generalized new spaces in different fields. See [2, 3, 4]. One of 
prominent space is partial metric space which was presented by Matthews [5] in 1994. Later on, 
several authors obtained generalized version of celebrated Banach contraction principle. See [6, 
7, 8]. As we know the fact that in Banach contraction principle, self map S is continuous which 
is con- sidered to be a weakness of the theorem. To remove this superfluous condition of 
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where ρ ∈ 0,

  . 
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complete metric space (U, d) if there are ρ ∈
 

0, 1
 

such that 

∈ 
→ 

∈ 

 

continuity, Kannan [9] introduced a new mapping known as a Kannan contraction i.e., 
d(Sξ, Sν) ≤ ρ[d(ξ, Sξ) + d(ν, Sν)] for allξ, ν ∈ U, 
1 
2 
In 1968, Bryant [10] introduced a new concept in contraction i.e., A map S need 
not have to be a contraction, but for some n N, the map Sn may be a contraction. Sehgal [11] 
extended the notion and established a unique fixed point. i.e., Consider a complete metric space 
(U,d) and α [0,1) and a self map S : U U be a continuous map. If for each ξ U there exists a positive 
integer k = k(ξ) such that 

d(Sk(ξ)ξ, Sk(ξ)ν) ≤ αd(ξ, ν) for all ξ, ν ∈ U. 

Hence S is a unique fixed point in U. On expansion of contractive maps, in 1972, Reich [12] 
introduced a new class of mappings which is a generalisation of the Kannan contraction and 
Banach contraction, e.g., a self mapping S : U U is called a Reich-contraction if there are α1, α2, 
α3 [0, 1) and α1 + α2 + α3 < 1 such that 

d(Sξ, Sν) ≤ α1d(ξ, Sξ) + α2d(ν, Sν) + α3d(ξ, ν) for all ξ, ν ∈ U. 

A self map S  :  U  → U  is called a Reich–Rus–C
´ 

iric´  contraction mapping on a 

3 

d(Sξ, Sν) ≤ ρ[d(ξ, ν) + d(ξ, Sξ) + d(ν, Sν)], 

for all ξ, ν       X, then S possesses a unique fixed point. See [13, 14, 15, 16, 17, 18, 19, 20]. As a 
generalisation of spaces, Gupta and Gautam [20, 21] defined quasi- partial b -metric 
space(QPBMS) and established fixed point results on this space. Since then, many authors have 
contributed in the development of metric fixed point theory. [22, 23, 24, 25, 26, 27, 28]. For 
further study related to this field 
see([29, 30, 31, 32, 33, 34]. 

In this paper, we have proved the existence of fixed point in extended C
´ 

iric´ con- traction and 

Bota’s contraction in this space. 
Let us recall the basic definitions of a QPBMS. 
 
Definition 1.1 ([20]) Let (U, qpb) is a QPBMS where U is a non-empty set and qpb defined as qpb 
: U × U → R+ such that for some real number s ≥ 1 and all ξ, ν, z ∈ U: 

1. qpb(ξ, ξ) = qpb(ξ, ν) = qpb(ν, ν) implies ξ = ν, 

2. qpb(ξ, ξ) ≤ qpb(ξ, ν), 

3. qpb(ξ, ξ) ≤ qpb(ν, ξ), 

4. qpb(ξ, ν) ≤ s[qpb(ξ, z) + qpb(z, ν)] − qpb(z, z). Here s is defined as a coefficient of 

(U, qpb). 

Let qpb be a QPBM on the set U . Then 

dqpb (ξ, ν) = qpb(ξ, ν) + qpb(ν, ξ) − qpb(ξ, ξ) − qpb(ν, ν) is a b-metric on X.
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Lemma 1.1 ([21]) Let (U, qpb) be a QPBMS. Then: 

1. If qpb(ξ, ν) = 0 then ξ = ν. 

2. If ξ = ̸ ν, then qpb(ξ, ν) > 0 and qpb(ν, ξ) > 0. 

Definition 1.2 ([21]) Let us consider a QPBM (U, qpb). Then 

1. a sequence {ξn} ⊂ U converges to ξ ∈ U iff 
qpb(ξ, ξ) = lim 

n→∞ 
qpb(ξ, ξn) =  lim 

n→∞ 
qpb(ξn, ξ).

 

2. a sequence {ξn} ⊂ U is said to be a Cauchy sequence iff

lim 
n,m→∞ 

qpb(ξn, ξm) and lim 
m,n→∞ 

qpb(ξm, ξn)exists (and are 
finite).

 

3. The QPBMS (U, qpb) is said to be complete if every Cauchy sequence {ξn} ⊂ 

U converges with respect to τqpb to a point ξ ∈ X such that 

qpb(ξ, ξ) =
 
lim 
n,m→∞ 

qpb(ξn, ξm) = lim 
m,n→∞ 

qpb(ξm, ξn).

 

4. A map g : U → U is continuous at ξ0 ∈ U if, for every ε > 0, there exist 

δ > 0  such that  g(B(ξ0, δ)) ⊂ B(g(ξ0), ε). 

Lemma 1.2 ([23]) Consider (U, qpb) be a QPBMS and (U, dqpb ) be the corre- sponding b-metric 
space. Then (U, dqpb ) is complete if (U, qpb) is complete. 

Lemma 1.3 ([24]) Let (U, qpb) be a QPBMS and S : U → U be a given map. S is called a 
sequentially continuous at z ϵ U if for each sequence {ξn} in U converging to z, we have: Sξn → 
Sz, i.e., qpb (Sξn, Sz) = qpb(Sz, Sz). 

 
2 Main Results 

We start this section by the following result. 

Theorem 2.1 Let us consider (U, qpb) be a complete QPBMS with s      1 and S : U    U be a self 
map. If for each ξ    U there exists a positive integer n = n(ξ) such that 
 

qpb(Snξ, Snν) ≤ α max {qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), 

..., d(ξ, Snν), d(ξ, Snξ)} (2.1) 

satisfies for some α ∈ [0, 1 ) and all ν ∈ U, then S has a unique fixed point ξ ∈ U. Moreover, for 
every ξ ∈ U we get limm→∞ Smξ = ξ∗.



 
 
 

SOME FIXED POINT THEOREMS ON EXTENDED C´ IRIC´ CONTRACTION IN QUASI-
PARTIAL B-METRIC SPACE 

  

ISSN:1539-1590 | E-ISSN:2573-7104 
Vol. 5 No. 2, (2023) 
 

© 2023 The Authors 
 

9517 

{ } ∈ 

≤ 

{ } 
∈ { } 

k−1 

k−1 

k−1 

k−1 

b b

n p

 

First, we will show the orbit,   Smξ  ∞m=0, is bounded for all ξ U .  Let us prove that, 

r(ξ) = sup{qp (ξ, Smξ): m ∈ N } ≤ 1 maξ{qp (ξ, Sqξ): 0 < q ≤ n(ξ)},

1 − sα 
(2.2)

for any ξ ∈ U . Let m is any positive integer and k is a positive integer which depends on ξ ∈ U 
and m such that 

qpb(ξ, Skξ) = max{qpb(ξ, Spξ): 0 < p < m}. (2.3) 

Let us assume that k, m > n. Hence from 2.1 we get 

qpb(ξ, Skξ) ≤ s[qpb(ξ, Snξ) + qpb(Snξ, SnSk−nξ)] 
≤ s[qpb(ξ, Snξ) + α max{qpb(ξ, Sk−nξ), qpb(ξ, Sk−n+1ξ), 
..., qpb(ξ, Skξ), qpb(ξ, Snξ)}] 

≤ s qpb(ξ, S ξ) + s α max{qpb(ξ, S  ξ): 0 < p < m} 

By using 2.3, we get qpb(ξ, Skξ) s qpb(ξ, Snξ) + s α qpb(ξ, Skξ) and there- fore 
qpb(ξ, Skξ) ≤ s qpb(ξ, Snξ)/1 − sα. 

Since m is arbitrary we will say 

supm>n(ξ) qpb(ξ, Smξ) ≤ qpb(ξ, Skξ) ≤ s qpb(ξ, Sn(ξ)ξ)/1 − sα, 

and therefore 2.2 satisfies.  Next, {Smξ}∞m=0, is bounded for every ξ  ∈ U .  Now next, we shall 
prove that the sequence {Smξ0} is Cauchy, where ξ0 ∈ U is an arbitrary. For this aim, we set up a 
sub-sequence {ξk} : choosing arbitrary point ξ0 ∈ U with n0 = n(ξ0), we set ξ1 = Sn0 ξ0 and by 
induction we get 

ξi+1 = Sniξi with ni = n(ξi). 

We choose any arbitrary ξk         ξk    and we fixed it.  Let ξp  =  Spξ0, ξq  =  Sqξ0 be two members of 
Smξ0 that are successor terms of ξk. Then ξp = Suξk and ξq = Svξk for some u, v respectively. Then by 
2.1 we conclude 

qpb(ξk, ξp) = qpb(Sn ξk−1, Suξk)

= qpb(Sn ξk−1, Sn Su−nk−1 ξk−1)

≤ α max{qpb(ξk−1, Su−nk−1 ξk−1), qpb(ξk−1, Su−nk−1+1ξk−1), 
..., qpb(ξk−1, Suξk−1), qpb(ξk−1, Sn ξk−1)} 

= α qpb(ξk−1, Su1 ξk−1), 

where u1 ∈ {u − nk−1, u − nk−1 + 1, ..., u, nk−1} such that 

qpb(ξk−1, Su1 ξk−1) = max{qpb(ξk−1, Su−nk−1 ξk−1), qpb(ξk−1, Su−nk−1+1ξk−1) 

, ..., qpb(ξk−1, Suξk−1), qpb(ξk−1, Snk−1 ξk−1)} 

(2.4)
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Continuing this process, we get 

qpb(ξk−1, Su1 ξk−1) ≤ α max{qpb(ξk−2, Su1 ξk−2, ..., qpb(ξk−2, Snk−2 ξk−2)} 
= α qpb(ξk−2, Su2 ξk−2). 

On computing k-times, we have 

qpb(ξk, ξp) ≤ αqpb(ξk−1, Su1 ξk − 1) ≤ α2qpb(ξk−2, Su2 ξk−2) ≤ ... 
≤ αkqpb(ξ0, Suk ξ0).

Consequently, we obtain that  
qpb(ξk, ξp) ≤ αk r(ξ0).

Analogously, we also get that 

qpb(ξk, ξq) ≤ αk r(ξ0). 

By using the definition of QPBMS, we derive that 

qpb(ξp, ξq) ≤ s[qpb(ξk, ξp) + qpb(ξk, ξq)] ≤ 2sαkr(ξ0). (2.5) 

So, we prove that the orbit {Smξ0} is a Cauchy. As (U, qpb) is a complete QPBMS and there is a ξ∗ 
∈ X such that ξ∗ = limm→∞ Smξ0. Now next, we will prove that ξ∗ is a fixed point of Sn(ξ∗). Let m ≥ 
n = n(ξ∗), 

qpb(ξ∗, Snξ∗)  ≤ s[qpb(ξ∗, Smξ0) + qpb(Snξ∗, SnTm−nξ0)] 
≤ s[qpb(ξ∗, Smξ0) + α max{qpb(ξ∗, Sm−nξ0), qpb(ξ∗, Sm−n+1ξ0), 

..., qpb(ξ∗, Smξ0), qpb(ξ∗, Snξ∗)}]. 

On taking the limit as m → ∞, 

qpb(ξ∗, Snξ∗) ≤ α qpb(ξ∗, Snξ∗) 

Since α   (0, 1 ), we find that ξ∗ is a fixed point of Sn(ξ∗). To prove the unique fixed point, consider 
ξ∗ and ν∗ be the two distinct fixed points and n = n(ξ∗). We get 
 

qpb(ξ∗, ν∗) = qpb(Snξ∗, Snν∗) 
≤ αmax{qpb(ξ∗, ν∗), qpb(ξ∗, Sν∗), qpb(ξ∗, S2ν∗), 

..., qpb(ξ∗, Snν∗), qpb(ξ∗, Snξ∗)} 

≤ α qpb(ξ∗, ν∗) 

which gives contradiction, as α ∈ (0, 1 ). Uniqueness and Sn(ξ∗)ξ∗ = ξ∗ shows 

that ξ∗ is another fixed point of S. Say, 

Sξ∗ = SSn(ξ∗)ξ∗  = Sn(ξ∗)Sξ∗. 

Hence the proof of this theorem is complete.
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Example 2.1 Consider U  = [0, 4] defined with QPBMS qpb(ξ, ν) = ξ ν + ξ . Let S be 
self mapping on QPBM defined by 
 

Sξ = ξ, ξ ∈ [0, 2] 
1,  ξ ∈ (2, 4] 

Then (the point) 0 is a unique fixed point of the map S satisfying equation 2.1 where 
n = 2 and α ≥ 1 . 

Case I For ξ, ν ∈ [0, 2] we have, 

qpb(S2ξ, S2ν) = |ξ − ν| + |ξ| 
max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)} = |ξ − ν| + |ξ| 

It implies, 

qpb(S2ξ, S2ν) ≤ α max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)}. 

Therefore the inequality which is required in equation 2.1 holds for ξ, ν [0, 2] as shown 
in Figure 1. 
 
 

 

Figure 1: Dominance of right hand side of Equation (2.1) is visually checked for 
ξ, ν ∈ [0, 2]. 

Case II For ξ ∈ [0, 2], ν ∈ (2, 4] we have, 

qpb(S2ξ, S2ν) = |ξ − 1| + |ξ| 
max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)} = |ξ − 1| + |ξ| 

It implies, 

qpb(S2ξ, S2ν) ≤ α max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)}. 

Hence the inequality necessary in equation 2.1 holds for ξ [0, 2], ν (2, 4] as shown 
in Figure 2.



 
 
 

SOME FIXED POINT THEOREMS ON EXTENDED C´ IRIC´ CONTRACTION IN QUASI-
PARTIAL B-METRIC SPACE 

  

ISSN:1539-1590 | E-ISSN:2573-7104 
Vol. 5 No. 2, (2023) 
 

© 2023 The Authors 
 

9520 
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Figure 2: Dominance of right hand side of Equation (2.1) for ξ ∈ [0, 2], ν ∈ (2, 4]. 

Case III For ξ ∈ (2, 4], ν ∈ [0, 2] we have, 

qpb(S2ξ, S2ν) = |1 − ν| + 1 
max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)} = |ξ − ν| + |ξ| 

It implies, 

qpb(S2ξ, S2ν) ≤ α max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)}. 

Therefore, the inequality mandatory in equation 2.1 holds for ξ (2, 4], ν [0, 2] 
as shown in Figure 3. 
 
 

 

Figure 3: Dominance of right hand side of Equation (2.1) that is visually checked for ξ ∈ (2, 4], 
ν ∈ [0, 2]. 

Case IV For ξ, ν ∈ (2, 4] we have, 

qpb(S2ξ, S2ν) = 1 
max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)} = |ξ − 1| + |ξ|
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It implies, 

qpb(S2ξ, S2ν) ≤ α maξ{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), qpb(ξ, S2ξ)}. 

Therefore, the inequality in equation 2.1 holds for ξ, ν (2, 4] as shown in Figure 4. 
 
 

 

Figure 4: Dominance of right hand side of Equation (2.1) that is visually checked for ξ, ν ∈ (2, 4]. 

Hence, Theorem 2.1 is satisfied (n = 2, α = 1) and S has common fixed point 0. 

Theorem 2.2 Consider a complete QPBMS (U, qpb) with s      1 and S : U      U is a map that is 
continuous. If for each ξ U there exists a positive integer n = n(ξ) such that 

qpb(Snξ, Snν) ≤ α max{qpb(ξ, ν), qpb(ξ, Sν), qpb(ξ, S2ν), ..., qpb(ξ, Snν), 
qpb(ξ, Sξ), qpb(ξ, S2ξ), ..., qpb(ξ, Snξ)}, (2.6) 

holds for some α ∈ [0, 1 ) and all ν ∈ U, then S has a unique fixed point ξ∗ ∈ U. Moreover, for 
every ξ ∈ U limm→∞ Smξ = ξ∗. 

By using Theorem 2.1, we conclude that the orbit Smξ0 is bounded and it is Cauchy sequence. 
Since QPBMS is complete space, it has limit ξ∗ U. Continuity property of S gives us that

Sn(ξ∗)ξ∗ = Sn(ξ∗)  lim 
m→∞ 

Smξ0 =  lim 
m→∞ Sm+n(ξ∗)ξ0 = ξ∗.

Thus, ξ∗ is the fixed point of Sn(ξ∗)ξ∗. Similar to the Theorem 2.1 we get that ξ∗ is the unique fixed 
point of S. 
 
 
3 Bota’s Theorem in QPBMS 

In 2016, Bota [22] introduced operators in relation with a contractive iteration in the notion of b 
metric space. In our next result, we have generalised Bota theorem in notion of QPBMS.
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∞  → ∞ 

 

Definition 3.1 Consider a function φ : [0, ) [0, ) that satisfies the following 
properties : 

(cf1) φ is increasing; 

(cf2) limn→∞ φn(t) = 0, for t ∈ [0, ∞). 

Here, Φ be the class of the comparison function φ : [0, ) [0, ). If φ is a 
comparison function so : 

(cfi) each φk is a comparison function, for all k ∈ N; 

(cfii) φ is continuous map at 0; 

(cfiii) φ(t) < t for all t > 0. 

Definition 3.2 A function φc : [0, ) [0, ) is said to be a c-comparison func- tion if 
: 

(ccfi) φc is monotone increasing; 

(ccfii)  
Σ∞n=0 φn(t) < ∞, for all t ∈ (0, ∞). 

The family of c-comparison functions is denoted by Φc. 
 

Definition 3.3 A function φ : [0, ) [0, ) is said to be a b-comparison func- tion if 
: 

(bcf1) φ is monotone increasing; 

(bcf2) ∞n=0 snφn(υ) < ∞, for all υ ∈ (0, ∞) and s ≥ 1 a real number. We are denoting 
by Φb the family of b-comparison functions. 
Notice that any b-comparison function is a comparison function. 

Theorem 3.1 Let (X, qpb, s) be a complete QPBMS with s ≥ 1 and S : U → U a map that satisfies 
the condition : there exists ϕ ∈ Φb such that for each ξ ∈ U there is a positive integer n(ξ) such 
that for all ν ∈ U 

qpb(Sn(ξ)(ξ), Sn(ξ)(ν)) ≤ ϕ(qpb(ξ, ν)). (3.1) 

Then, S has a unique fixed point ξ∗ ∈ U and Sn(ξ0) → ξ∗ for each ξ0 ∈ U, as 

n → ∞. 

From the initial proof of Theorem 2.1, we conclude that the orbit Smξ0 is bounded. By Theorem 
2.1, we complete the proof. 
We shall show that the sequence {Smξ0} is Cauchy, where ξ0 ∈ U be an arbi- trary. Now, we shall 
construct a sub-sequence {ξk} in the following way: For an arbitrary point ξ0 ∈ X with n0 = n(ξ0), 
we set ξ1 = Sn0 ξ0 and recursively we find 

ξi+1 = Sniξi with ni = n(ξi).
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We consider any arbitrary ξk  ξk   and fixed it. Now take two members ξp = Spξ0, ξq  =  Sqξ0 of  Smξ0   
that are successor terms of ξk.  Then ξp  =  Suξk  and Svξk for some u, v respectively. Then by 2.1 we 
conclude 

qpb(ξk, ξp) = qpb(Snk−1 ξk−1, Suξk) 

= qpb(Snk−1 ξk−1, Snk−1 Su−nk−1 ξk−1) 
u

≤ ϕ(qpb(ξk−1, S ξk−1)

< qpb(ξk−1, Su1 ξk−1). 

Continuing in this way, we have 

qpb(ξk−1, Su1 ξk−1) ≤ ϕ(qpb(ξk−2, Su1 ξk−2)) 
< qpb(ξk−2, Su2 ξk−2). 

Completing this computation k-times we have 

qpb(ξk, ξp) ≤ ϕ(qpb(ξk−1, Su1 ξk−1)) ≤ ϕ2(qpb(ξk−2, Su2 ξk−2)) ≤ ... 
≤ ϕk(qpb(ξ0, Suk ξ0)) 
 

Consequently, we obtain that 

qpb(ξk, ξp) ≤ ϕk(r(ξ)) < r(ξ). 

Analogously, we also get that 

qpb(ξk, ξq) ≤ ϕk(r(ξ)) < r(ξ). 

By using the triangle inequality, we get 

qpb(ξp, ξq) ≤ s[qpb(ξk, ξp) + qpb(ξk, ξq)] ≤ 2r(ξ). (3.2) 

The orbit {Smξ0} is a Cauchy. 

As (X, qpb) is a complete QPBMS and there is a ξ∗ ∈ U such that ξ∗ = limm→∞ Smξ0. 

We show that ξ∗is a fixed point of Sn(ξ∗). Let m ≥ n = n(ξ∗), we have 

qpb(Snξ∗, Sn+mξ0)  ≤ ϕn(qpb(ξ∗, Sm−nξ0))

Taking the limit as m → ∞  
qpb(ξ ∗, Snξ∗ ≤ 0
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which gives that ξ∗ is a fixed point of Sn(ξ∗). To show the unique fixed point, consider ξ∗ and ν∗ 
are two distinct fixed point and n = (ξ∗). We get 

qpb(ξ∗, ν∗) = qpb(Snξ∗, Snν∗) 
≤ ϕ(qpb(ξ∗, ν∗)) 
< qpb(ξ∗, ν∗) 

which contradicts. 

Uniqueness and Sn(ξ∗)ξ∗ = ξ∗ gives that ξ∗ is also the fixed point of S. Say, 

Sξ∗ = TTn(ξ∗)ξ∗ = Sn(ξ∗)Sξ∗. 

4 Conclusions 

The major contribution of this manuscript is to prove the existence of unique fixed points in 

extended C
´
iric´  contraction map in the setting of quasi-partial b-metric space. Common and 

coupled fixed points for such type of mappings and their implementation in the field of science 
and technology will be an impressive concept for future study. 
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