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Abstract— This paper explores a dual server queuing model with BBS rule, where the procedures 
for arrival and servicing are id. The model consists of two independent service facilities. The main 
objectives of this study are to determine the average queue length of the system and to obtain the 
average and standard deviation of the busy period distribution. 
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I.  INTRODUCTION  
The paper investigates a two-server id queueing model for analysis using BBS rule. This model 
extends the traditional two-server case. The BS process includes two service facilities with 
capacities B1 and B2, respectively. 
 
A batch of B1 units or the whole queue length, whichever is shorter, is chosen for service from the 
head of the line whenever the first channel becomes available. Similarly, when the second channel 
becomes available, it takes B2 units (where B2 < B1) or the entire queue length (whichever is less) 
for service. When there is no queue length and both servers are idle, the next unit to arrive is always 
sent to the first service facility. 
 
The arrival and service procedures are assumed to be id, and the two service facilities to function 
independently of one another. Such situations are common in places like Marshalling Yards with 
two engines or buildings with elevator systems having two lifts. 
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In the paper, the authors develop DDE and utilize GF methods to solve them. They derive and 
analyze the system characteristics in the presence of the DP. These models can be seen as 
generalizations of the BS queuing models presented by Arora in 1963. 
  
II. TWO SERVER ID QUEUEING MODEL WITH B B S   
In this study, we examine the B B S queueing model with two servers, where the arrival and service 
processes are id. The two service channels operate independently of each other.  Poisson 
distribution governs the arrival process, which has a mean arrival rate of λ, additionally, the service 
time distributions in the two facilities are exponential, with mean service rates   and   respectively. 
Then the conditional process of the number of service completions of the first service facility given 
that the number of arrivals is of the form   
 

 =t2n=2X1n=XP :/11    
 






















 







)21min

0

1

1

11

2

112

!
11

n(n

j=

jnjnj

j

n)t(μ
,

jn

t

λ

λ

λ
Ce


   . .(1)  

here  is the number of service completions in the first service facility during time t. 
 is the number of arrivals during time t,  is the mean dependence rate. 
 
Similarly, the quantity of services that the second service facility has completed given the number 
of arrivals is of the form,  

     
 






















 









)21min

0

1

1

22
2

222
12 ! 

 
 :/ 22

n(n

=j

jnjnj

j

n)t(μ

221

,

jn

t

λ

λ

λ
Cetn=XnXP


. .(2) 

Where,  is the number of service completions in the second service facility during time t. 
 is the number of arrivals during time t,   is the mean dependence rate.  
 
            Let the chance that at time t, the two channels are empty and no unit is in the queue and is 
waiting in the queue be  . The chance that at time t, the first channel is busy and the second channel 
is empty be  and no unit is in the queue.  The chance that at time t, the first channel is empty and 
the second channel is busy be  and no unit is waiting in the queue. 
 
         be the probability that at time t  and   , either of the two channels is busy and there is 
no unit waiting in the queue. And at time t,  be the probability, both the channels are busy and 
there are n (  be the number of units waiting in the queue. 
 
The D.D.E of the model, with the above probabilities, are 
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Multiplying equation (3) by proper powers of x and add, we get 
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Applying Laplace-transformation to the equations (3) and (5) and using the initial conditions, we 
have 
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Applying Roche’s theorem, it can be seen that for 2B  
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Has 1B root’s inside the unit circle 1x .  Let the roots that lies inside 1x  be denoted by ),(sxk  

k 1, 2 , 3 .. 1B  and that which lies outside be ).(0 sx    
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Substituting equations (11), (13) and (14) in (15), we get, 
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In the queue, the average number of customers is qL  in steady state, then by using the Tauberian 

theorem, namely, 
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Where /
0x  is the root of the equation given in equation (8), 
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Table 1.   Values of qL  

                             1B = 5,    λ  =  2 and     =  3 

2B  
  
0 0.2 0.4 0.6 0.8 

0 0.1229 0.10132 0.08091 0.06181 0.0446 
1 0.06056 0.0497 0.03941 0.03002 0.0216 
2 0.05239 0.04337 0.03476 0.02669 0.01941 
3 0.05081 0.044219 0.03391 0.0261139 0.0191 
4 0.05048 0.04192 0.03341 0.02603 0.0190 

 From the above table for clipped values of 1B  ,  ,   and varying values of    the values of  qL  

are computed.  It is observed that   increases then the mean queue length qL decreases. And also 

the average queue length qL decreases as 2B  increases for fixed values of  ,   and 1B and the 

DP. 

 
Busy Period Analysis: 
We determine the busy period distribution for two cases, namely,  
i)  One or more of the servers is still in use   and  
ii) The two servers are still in use. 
 
A single channel is occupied.: When both the servers in the channels are idle, at least one of the 
server busy with the arrival of a unit, and this lasts up to the instant at which both channels are 
become idle (i.e., the busy period starts with the arrival of a unit). 
 
We assume 

b   B     21 B ;    

          21   ;       

 /2         21   

 (t)(t)     (t) 011011 PPP   
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