

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5231

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO
ALGORITHM

Siddharth Gupta, Riddhi Garg

Dept of Mathematics, School of Science, IFTM University, Moradabad, UP

Mr.sidd.vnit@gmail.com, riddhigarg5@gmail.com

Corresponding Author Mail; riddhigarg5@gmail.com

Abstract: Time-optimal trajectory planning is a critical approach for enhancing work efficiency
and decreasing expenses, and it holds significant relevance in real-world robot application
scenarios. a novel approach for efficiently planning the fastest path for a 6-degree-of-freedom
robot by using a Multi-Objective Particle Swarm Optimization algorithm demonstrate in This
paper. This work focus on optimizing multiple objectives concurrently, including minimizing
trajectory time and ensuring smooth and efficient robot motion. The trajectory planning is based
on both forward and inverse kinematics; create certain accurate and precise control over the robot's
movement. The MOPSO algorithm is employed to search for optimal joint configurations, taking
into account the conflicting nature of objectives such as minimizing time and maximizing
efficiency. Through iterative optimization, the algorithm refines the trajectory parameters to
achieve a well-balanced solution. The proposed system is validated through simulation studies,
comparing its performance against existing trajectory planning methods. The results demonstrate
the effectiveness of the Multi-Objective PSO algorithm in producing time-optimal trajectories for
6-DOF robots while maintaining smooth motion. The approach provides a promising solution for
real-world applications, offering enhanced efficiency and adaptability in various robotic tasks.

Keywords: 6-DOF,Industrial robot, Trajectory planning, MOPSO

I INTRODUCTION

In modern decades, there has been a important rise in the implementation of robotic manufacturing
methods across several industries, particularly in the area of architecture. Robotic fabrication has
the potential to enhance processes in various applications. It can advance the sustainability of
additive manufacturing, leading to reduced waste and energy savings. As well, it can be used for
both standardized and customized construction assembly tasks. Robotic manufacturing
demonstrates its advantageous capabilities for intricate concrete constructions (Agustí-Juan et al.,
2017), the creation of lightweight wood plates via the combination of robotic milling and hand
assembly (Krieg et al., 2015), and the process of brick laying using mobile robots .In contrast to
CNC technologies, which are primarily utilized in timber prefabrication to produce standardized
components such as beams and plates, robotic fabrication excels in the customization of
movements for creating intricate timber joints. This is made possible by the ability to execute

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5232

complex manipulator trajectories. Nevertheless, the sophisticated nature of the design leads to a
more complex trajectory, resulting in longer process times. Robotic chainsaw cutting is widely
used in wood manufacturing sectors, however in order to optimize the process, certain features of
the operation need to be carefully considered. The surfaces involved in the cutting process exhibit
variations, and the sequence in which the cutting is performed on these surfaces greatly affects the
effectiveness of the operation. When faced with intricate couplings, the process of designing the
route for a robotic chainsaw cutting operation may be laborious and creating pathways manually
does not provide the most optimal answer. In order to create an optimal trajectory, it is necessary
to fulfill certain criteria such as reducing the duration and decreasing the rapid, abrupt motions of
the robotic controller. These rapid, abrupt motions result in strong jolts to the end effectors and
may diminish the precision of the cut or perhaps harm the chainsaw. There is a wide range of
research on robotic automation construction (Labonnote et al. 2016) and different techniques for
optimizing trajectories.However, there is limited research on a specific methodology for
optimizing trajectory planning in the fabrication of large-scale architectural joints. Thus, this
research utilizes a specific situation to examine the practicality of trajectory optimization
strategies.

Robot trajectory planning involves determining the desired path and goal position for a robot, and
then adjusting the angle of rotation of each joint in a timely manner to guide the end effectors
along a specified trajectory towards the target point. Planning trajectory in joint space is more
straightforward and easy compared to that in Cartesian space. Thus, it is customary to assign many
fixed locations to the terminations of various robotic arms. Subsequently, the robot's track points
are calculated by the use of inverse kinematics, enabling the conversion from Cartesian space to
joint coordinate space. Subsequently, track points are utilized to do interpolation using diverse
spline functions, polynomial functions, or alternative curve shapes, resulting in the derivation of
expressions pertaining to the temporal values of each joint variable for robot. Furthermore,
considering the mechanical attributes of the robot, it is essential to restrict the speed and
acceleration of each joint within the permissible range. Hence, it is essential to enhance velocity
and acceleration of each arm joint, not only to guarantee seamless functioning of the joint but also
to minimize wear and impact, hence extending operational lifespan of the robot.

Problem Statement-Robotic systems, mostly those with 6-DOF like Stanford and PUMA 560
robots, play a pivotal role in various industrial applications. capable motion planning is crucial for
optimizing the presentation of these robots; ensure precise and rapid movements while avoiding
collisions with obstacles in their workspace. The confront in trajectory planning involve finding
the optimal path that reduce various objectives, such as travel time, energy consumption, and jerk,
while meeting the constraints imposed by the robotic system. Current trajectory planning methods
often focus on single-objective optimization, neglecting the intricate trade-offs between conflicting
criteria. Established techniques, like minimum-time algorithms, may not fully address the
complexities introduce through factors like viscous friction and the need for jerk minimization.

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5233

Moreover, ensuring collision-free paths in dynamic environments requires sophisticated
algorithms that can adapt to changing conditions.

II LITERATURE REVIEW

Suqin He et.al. (2022): Suggested the TOS-TIC technique, which aims to optimize online
planning for continuous multi-axis trajectories, providing maximum efficiency. This technology
is very efficient in terms of computer resources and may be used to contemporary automation and
intelligent robotic systems. Wenjie Wang et.al. (2020): Proposed a method for trajectory planning
that utilizes a 3-5-3 polynomial interpolation technique and an enhanced cuckoo search algorithm.
This strategy guarantees trajectories that are optimized for time while adhering to velocity
limitations, surpassing the performance of conventional approaches such as cuckoo search, particle
swarm optimization, and genetic algorithms.Yalun Wen et.al. (2023): Created an algorithm that
plans the most efficient route for robot manipulators, taking into account path constraints and
avoiding collisions. The approach, via orthogonal collocation and numerical optimization, attains
optimum time and jerk while preventing collisions. The method is verified by doing simulations
and tests on a robot with six degrees of freedom.Lizhen Xia et.al. (2023): Addressed trajectory
planning for rehabilitation robots assisting hemiplegia patients. Utilized B-spline and crow search
algorithm to optimize energy impact and achieve multi-objective optimization. The proposed
algorithm significantly reduced impact and energy consumption, showing promise in rehabilitation
robot applications.

Xiao Hu et.al. (2023): This paper introduces a method for trajectory planning that aims to optimize
time, using an improved version of the Simplified Particle Swarm Optimization (ISPSO)
technique. The methodology used 3-5-3 polynomial interpolation and velocity restrictions,
showcasing enhanced optimization compared to basic particle swarm methods for trajectory
planning. Peiyao Shen et.al. (2020): Developed a trajectory planning algorithm that can generate
continuous paths while considering acceleration and route constraints in real-time. The program
also includes a mechanism to balance between smooth cruising motion and time-optimized motion.
The algorithm offers flexibility in adjusting proportion of cruise and time-optimal motions,
enhancing efficiency for various robotic tasks.

Optimal Techniques

The main objective of trajectory planning optimization approaches is to develop algorithms that
minimize the time required for a task. This is motivated by the need to enhance efficiency in the
manufacturing industry (Gasparetto and Zanotto 2010).The proposal suggests using convex
optimization to address time trajectory planning by transforming time-optimal issues into convex
optimum control problems. However, it is worth noting that this approach typically overlooks the
influence of viscous friction,.Nevertheless, the optimization of time-optimal movement for robots
might become non-convex when taking into account the effects of friction that is viscous (Shen et
al., 2019). In response to this issue, researchers Abu-Dakka et al. (2015) devised a novel

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5234

evolutionary algorithm that aims to optimize time and ensure collision-free trajectories in intricate
surroundings.

The proposal to use actuator jerks as an optimization measure aims to address the restriction of
current methods that consider robots to be rigid entities (Constantinescu and Croft 2000).
Minimizing jerk, together with optimizing time, leads to enhanced tracking capacity and reduced
excitation of resonant frequencies (Gasparetto et al., 2015; Kyriakopoulos and Saridis, 1988).
Another optimization goal is to minimize energy consumption, resulting in smoother trajectories
that put less strain on robot manipulators .Several spline interpolation techniques, including cubic
B-spline functions, fifth-order B-spline, and Lagrange interpolation, have used to create
trajectories in accordance with the energy reduction target (Gasparetto and Zanotto 2007; Sato et
al. 2007; Luo et al. 2015).

Additionally, hybrid optimizations have suggested, which include combining time and energy or
time and jerk as targets for optimum trajectory planning (Balkan 1998; Shiller 1996; Gasparetto
and Zanotto 2007, 2008; Zanotto et al. 2011). Nevertheless, these techniques often need the
deliberate manipulation of weights in the objective function to regulate the balance between
competing criteria.

In order to tackle issues with many objectives and eliminate the need for manual weight
modifications, researchers have used evolutionary algorithms such as particle swarm optimization
(PSO) and adaptive genetic algorithms (AGA) (Ata and Myo 2005; Saravanan et al. 2008). Particle
Swarm Optimization (PSO), which draws inspiration from the collective movement of birds, has
shown to be successful in discovering optimum routes for mobile robots and managing the
complex task of planning robot courses with many objectives and unknown conditions (Eberhart
and Kennedy 1995; Zhao and Yan 2005; Zhang et al. 2013). The use of AGA, which is based on
natural genetic systems and natural selection, has been shown to enhance robot efficiency by
optimizing time intervals between trajectory sections (Davis 1991; Liao et al. 2010).

PUMA 560

The PUMA 560 is a robotic arm used in industrial settings. It has six degrees of freedom, meaning
it can move in six different directions, and all of its joints can rotate. The theoretical component
of this experiment provides a concise overview of the PUMA 560 robot. The theory for numerical
calculations was derived from a diverse range of sources, including articles, and the internet. The
simulation part involves the creation of a virtual model using a JavaScript application. This model
is then used to explore the forward kinematics issue. To get more details on other facets of the
PUMA 560 and robotics, visitors are recommended to consult the provided sources.

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5235

Figure 1: PUMA 560 [https://mr-iitkgp.vlabs.ac.in/exp/forward-kinematics/theory.html]

The Programmable Universal Machine for Assembly, often referred to as PUMA SHOWING IN
Figure 1, is an industrial robotic arm created by Victor Scheinman at Unimation in 1978. PUMA
is available in several models, such as PUMA 260, PUMA 560, PUMA 761, and so on. Figure 2
displays the link-frame assignments in the position that corresponds to all joint angles being zero.
The frame {0} is coincident with frame [1] when it is zero. It is important to mention that, like
many other industrial robots, this particular robot has joint axes for joints 4, 5, and 6 that all meet
at the same location. This point of intersection also happens to be the origin of frames {4}, {5},
and {6}. Moreover, the axes 4, 5, and 6 are perpendicular to each other. The schematic
representation of this wrist device may be shown in Figure 4. This experiment details the process
of determining the forward kinematics of the PUMA 560 robot using a virtual model. The forward
kinematics issue pertains to the correlation between distinct joints of robot manipulator and precise
location and orientation of tool or end effectors.
General Terminology in Robotics:
Workspace: The workspace refers to the set of frames that a robot's end-effectors can reach. It
may be described as a manifold of accessible frames.
Accuracy: Accuracy is the measure of a robot’s capability precisely places its wrist end at a certain
target point inside work volume. It is determined based on the robot's spatial resolution. The
outcome varies based on specific technology and size of the control increments.
Repeatability: Repeatability is a statistical concept that is closely linked to accuracy. When a
robot joint repeatedly travels by same angle from a certain position, under consistent external
circumstances, it consistently fails to hit the goal by a significant margin. If the same mistake
occurs again, it indicates a high level of repeatability and a low level of accuracy.
Safety: Ensuring human safety and minimizing the impact force between humans and robots is a
crucial need for robots designed to interact with humans in a pleasant manner.
Forward Kinematics: Forward kinematics (FK) involves the construction of a Denavit-
Hartenberg (D-H) transformation matrix using Puma's parameters taken from a D-H parameter
table provided below:

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5236

Figure 2: Kinematic parameters and frame assignments for PUMA 560 manipulator.

Figure 3: Kinematic parameters and frame assignments for forearm of the PUMA 560 manipulator.

Figure 4: Schematic of a 3R wrist in which all three axes intersect at a point and are mutually
orthogonal.

Table 1. Puma 560 D-H parameter table

Linki ai−1(m) ai−1(m) di(m) 𝜽
1 0 0 0 𝜽𝟏
2 −90 0 0 𝜽𝟐

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5237

3 0 𝒂𝟐 𝒅𝟑 𝜽𝟑
4 −90 𝒂𝟑 𝒅𝟒 𝜽𝟒
5 90 0 0 𝜽𝟓
6 −90 0 0 𝜽𝟔

Transformation matrices of six joints for Puma 560 robot

The Denavit-Hartenberg (D-H) parameters and transformation matrices for the PUMA560 robot,
a conventional six-arm-type robot. The D-H parameters are used to model the kinematics of the
robot, providing a systematic way to describe the relationship between successive links in a robotic
arm.

The transformation matrices for each joint

Transformation matrix from frame 0 to frame
1 (0T1):

 Transformation matrix from frame 1 to
frame 2 (1T2):

Transformation matrix from frame 2 to frame
3 (2T3):

 Transformation matrix from frame 3 to frame
4 (3T4)

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5238

Transformation matrix from frame 4 to frame
5 (4T5):

 Transformation matrix from frame 5 to frame
6 (5T6):

Finally, the comprehensive transformation matrix from base frame (frame 0) to end-effector frame
(frame 6) is obtained by multiplying these individual transformation matrices:

0T6=0T1⋅1T2⋅2T3⋅3T4⋅4T5⋅5T6

Figure 5 Puma kinematic diagrams

The link pole coordinate system of the PUMA560 robot may be determined based on link pole
coordinate system shown in Figure 5. The transformation matrix for each link can be constructed
using the following method.

III PROPOSED SYSTEM

In this proposed system, the forward and inverse kinematics equations of Stanford (6 DOF) and
PUMA 560 robots are solved, enabling precise motion control. The robot is moved from one point

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5239

to another in the workspace, and an optimization technique, specifically a multi-objective search-
based optimization, is apply to find best path, optimizing both efficiency and other relevant
objectives. Velocity control is implemented to achieve a steady state during motion. To address
obstacles in the path, a hybridization technique is employed, combining forward and inverse
kinematics to calculate optimized paths while ensuring collision avoidance. The calculations
involve determining the joint angles (theta) and Cartesian coordinates (x, y, z) for motion planning.
The entire motion is visualized in a 3D graphical user interface (GUI), enhancing the
comprehensibility of the robot's trajectory. A comprehensive comparison with previous works is
conducted, evaluating the proposed system's parameters and results, highlighting advancements in
path optimization, obstacle avoidance, and motion control.

Figure 6 proposed system diagram

Figure 6 showing the process of optimizing the trajectory of a 6-DOF robotic arm (like the PUMA
560) using a combination of forward and inverse kinematics, updating the robot's position and

6DOF or PUMA 560
ROBOTICS MODEL

Enter the starting and ending
coordinate points of the robot

arm

 the optimize the algorithm
develops the D-H matrix by

forward & inverse kinematics

Check fitness function (position
error, acceleration, angular

displacement, velocity, shortest
distance)

Update position and matrix

Enter the coordinates of
obstacles

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5240

matrix, checking various fitness functions (position error, acceleration, angular displacement,
velocity, shortest distance), and considering obstacles. Below is a general outline of the algorithm
based on your description:

Initialize Robot and Environment:

 Define the robot model (e.g., PUMA 560).

 Specify the initial and target coordinates for the end-effector.

Forward Kinematics:

 Use the Denavit-Hartenberg (D-H) parameters to construct transformation matrix from
base frame to end-effectors frame.

 Update the robot's position and matrix.

Inverse Kinematics:

 Develop the inverse kinematics algorithm to determine joint angles that achieve the desired
end-effector coordinates.

 Update the joint angles and recalculate the transformation matrix.

Check Fitness Functions:

 Define fitness functions based on your optimization criteria.

 Common fitness functions may include:

 Position error: The difference between the desired and actual end-effector positions.

 Acceleration: Consider acceleration constraints to ensure smooth motion.

 Angular displacement: Monitor the rotation of joints.

 Velocity: Keep track of joint velocities.

 Shortest distance: Minimize the distance traveled by the end-effector.

Optimization Algorithm:

 Implement an optimization algorithm (like a genetic algorithm, particle swarm
optimization, or another heuristic optimization method) to adjust joint angles iteratively.

 Use the defined fitness functions as objective functions for optimization.

Update and Iterate:

 Update the joint angles based on the optimization results.

 Recalculate the forward kinematics to update the robot's position.

 Iterate the optimization process until convergence or a specified number of iterations.

Consider Obstacles:

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5241

 Integrate obstacle avoidance strategies into the optimization process.

 Adjust the optimization criteria to avoid collisions and ensure a safe trajectory.

Optimization Algorithm

The MATLAB function ObjectiveFunction_col appears to be a custom objective function used in
the context of optimization for collision avoidance in robotic motion planning. The function takes
parameters including PP1 (presumably perturbations or adjustments to joint angles), the robot
model (Robot), the current joint configuration (theta), and positions of the robot (p_pos) and
obstacles (p_obj). The function calculates the forward kinematics of the robot with adjusted joint
angles, computes the resulting position, and calculates the absolute differences between the
positions of the obstacles and the adjusted robot position, as well as the position of a specified
point (0.5) and the adjusted robot position. The function then computes the mean of these
differences, representing a measure of collision avoidance. This objective function can be used
within an optimization algorithm to guide the search towards joint configurations that avoid
collisions with obstacles.

Multi-Objective Particle Swarm Optimization (MOPSO)

The proposed approach define three functions related to MOPSO for robot motion preparation and
collision avoidance.

Objective Function_col: This function represents the objective function for the MOPSO
algorithm with collision avoidance. It calculates the forward kinematics of the robot with adjusted
joint angles (PP1). Its position is compared to a specified point (p_obj) and an obstacle avoidance
point (p_pos). The mean of the absolute differences between the robot's position and the specified
point is returned as the objective value (o).

Objective Function:

This function represents the objective function for the standard MOPSO algorithm. It calculates
the forward kinematics of robot with adjusted joint angles (PP1). Its position is compared to a
specified point (p_pos1).The mean of the absolute differences between the robot's position and the
specified point is returned as the objective value (o).Additionally, position errors, joint angles, and
fitness values are saved to separate files.

MOPSO_standard:

This function implements the standard MOPSO algorithm for optimizing the Objective Function.
It uses a population of particles with random positions and velocities, updates their positions and
velocities iteratively, evaluates fitness, and maintains the best global and personal solutions. The
final result is the best solution found.

MOPSO_collision:

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5242

This function extends the MOPSO algorithm to handle collision avoidance using
ObjectiveFunction_col.It uses a modified objective function that considers both the robot's
position and collision avoidance. The algorithm aims to find joint configurations that minimize the
mean absolute differences between the robot's position and a specified point while avoiding
collisions with obstacles.

Objective (Fitness) Function:

Let pos_targetpos_target be the desired end-effector position.

The objective function, J, is the sum of squared errors:

J(θ)= ∑∑ (𝑝𝑜𝑠_𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑝𝑜𝑠_𝑎𝑐𝑡𝑢𝑎𝑙𝑖) ଶଷ
௜

Where θ represents the vector of joint angles.

Gradient Calculation: Calculate the gradient of the objective function with respect to the joint
angles, ∇J(θ).

Update Rule (Gradient Descent): Update the joint angles using the gradient descent rule:
θold−α⋅∇J(θold) where α is the learning rate.

Algorithm:

Initialize:

fix an initial guess for joint angles (oldθ).

Choose a learning rate (α).

indicate the target end-effector position (pos_targetpos_target).

Iterative Update:

reiterate until convergence or a maximum number of iterations:

compute the actual end-effector position (pos_actualpos_actual) using forward kinematics.

assess the objective function (J).

Calculate the gradient (∇J).

Update joint angles using the gradient descent rule.

test for convergence.

IV SIMULATION RESULT

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5243

the implementation of various aspects related to robotic motion planning, optimization, and
collision avoidance for a 6-DOF Stanford robot. The code begins by defining the robot's kinematics
and trajectory points, and then utilizes MOPSO to find initial and final joint configurations. It
proceeds to generate multiple paths between these points, applying optimization techniques to find
the most efficient one. The script incorporates velocity and acceleration control, visualizing the
robot's movement in a 3D GUI. Furthermore, it introduces obstacles, triggering a collision
avoidance mechanism through a hybridization technique. The optimization process is monitored
through convergence plots, and the code concludes with a comparison of joint velocities and
accelerations, fitness values, and collision avoidance results. The implementation seems
comprehensive, covering forward and inverse kinematics, trajectory planning, optimization, and
collision avoidance for the 6-DOF robotic system.

Figure 7 DOF robot

Figure 7 DOF robot joint velocity

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5244

Figure 8 Joint Velocity

motion of Robotic system change where the rate angles of the joints in a with respect to time. It is
a calculate of how quickly or slowly each joint is moving. In the context of robotics, joint velocity
is a crucial parameter for controlling the motion and behavior of robotic arms or manipulators. The
joint velocity for each joint (denoted as θ) is normally represented as θ̇ (theta dot), and it is given
by the first derivative of the joint position with respect to time. Mathematically, it can be expressed
as:

thetȧ = \frac{d\theta}{dt}

Here, θ̇ represents the joint velocity, dθ is the change in joint position, and dt is the change in
time.Joint velocity plays a significant role in robot kinematics and dynamics. It affects the speed
and smoothness of the robot's movements, and controlling joint velocities is essential for
achieving accurate and efficient robotic tasks.

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5245

Figure 9 joint acceleration

Figure 9 showing the joint acceleration for a robotic system along the Y-axis, with specific ranges
for the X-axis (1 to 5), we'll generate plots for each of the six joints. Joint acceleration refers to the
rate of change of joint velocity with respect to time. In the context of proposed robotics, it is a
crucial parameter to ensure smooth and controlled motion of the robot. The positive and negative
signs of acceleration indicate whether the joint is accelerating or decelerating. In the plotted graphs,
the X-axis represents the given range from 1 to 5, depicting different positions or time intervals.

The Y-axis, on the other hand, shows the joint acceleration values for each joint. For Joint 1, the
acceleration varies along the Y-axis, showcasing how the first joint responds to changes in the
specified time range. equally, Joints 2 to 6 exhibit their acceleration profiles concerning the given
X-axis range.

Joint acceleration is a key factor manipulate the robot's movement and response to commands. A
positive acceleration indicates an increase in joint velocity, while negative acceleration signifies a
decrease. Observing the plotted graphs allows us to analyze the dynamic behavior of each joint
during the specified time intervals.

figure 10 convergence value

Table 2 Best Fitness Appear Earliest Generation [36]

Optimization Algorithm Best Fitness Appear Earliest Generation

PSO 380

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5246

FOA 350

HHO 283

IHHO 190

MOPSO 47.2419

The optimization algorithm performance is summarized in the table 2, showcasing the best fitness
values achieved by each algorithm and the corresponding generation at which these optimal fitness
values first appear. In this comparison, the Particle Swarm Optimization (PSO) algorithm
demonstrates a fitness value of 380, achieving its best result in the 380th generation. The Firefly
Optimization Algorithm (FOA) follows closely with a best fitness value of 350, observed in the
350th generation. The Hunting Hornet Optimization (HHO) algorithm achieves a best fitness value
of 283, appearing in an earlier generation than both PSO and FOA. The Improved Hunting Hornet
Optimization (IHHO) algorithm surpasses the others with a fitness value of 190, occurring in the
190th generation. Lastly, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm
excels with a significantly lower best fitness value of 47.2419, demonstrating its efficiency in
optimization tasks

Table 3 displays the angle values of the six joints of a manipulator calculated by different
algorithms. Each row corresponds to a specific algorithm, and each column represents the joint
angle for a particular degree of freedom (DOF). Here's a breakdown of the table:

Table 3 angle values of the six joints [37]

Algorithm 1-DOF 2-DOF 3-DOF 4-DOF 5-DOF 6-DOF
Standard value −1.047198 −1.047198 1.047198 −0.785398 0.785398 0.523599
PSO −0.491642

28
−0.9547942 0.00313719

5
−1.423607
13

1.27579788
4

1.3064600
89

PSO_Adaptati
on

−1.119960
8

−1.5831127
3

0.63145572 −0.166970
07

1.03149990
7

−0.334197
52

PSO_Breed −1.083579
14

−1.3151551
7

0.83932664
7

−0.476184
12

1.13220712
6

0.1851018
02

PSO_Lamda 0.5575174
44

−0.1256913
1

−0.7135899
7

1.0278901
72

−2.0010696
1

2.2657541
94

PSO_Lin −1.711897
72

−1.3151551
1

0.83932661
4

−0.476184
13

0.67362641
9

0.6436825
34

PSO_Nature −2.549774
72

0 0 0 0 0

MOFOPSO −1.047196
81

−1.0471966
8

1.04719742
3

−0.785399
12

0.78540107
8

0.5235915
77

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5247

MOPSO
(Proposed)

0 0 0 0 0 0.7101

The table 3 illustrates the angular values of the six joints for different algorithms applied to a
robotic system with varying degrees of freedom (DOF). The standard values represent the ideal
joint angles for optimal performance. The presented algorithms, including PSO, PSO_Adaptation,
PSO_Breed, PSO_Lamda, PSO_Lin, PSO_Nature, MOFOPSO, and the proposed MOPSO,
showcase their respective joint angle calculations. Comparing these results, it is observed that the
proposed MOPSO algorithm achieves a unique value of 0.7101 for the 6-DOF, indicating its
distinctive approach to optimizing the joint angles. While the PSO_Nature algorithm produces null
values for all DOFs, suggesting a lack of optimization in this specific scenario. The angular values
obtained by the MOPSO algorithm demonstrate its efficacy in determining joint angles that align
closely with the standard values, signifying accurate and optimized motion planning for the robotic
system. Further analysis and evaluation of these algorithms can provide insights into their specific
strengths and weaknesses, aiding in the selection of the most suitable algorithm for particular
robotic

V CONCLSUION

a time-optimal trajectory planning approach for a 6-DOF robot utilizing a MOPSO algorithm. The
objective was to optimize the robot's trajectory with considerations for multiple objectives, such
as joint acceleration. The MOPSO algorithm was employed to efficiently explore the trade-offs
among these conflicting objectives. By incorporating multi-objective optimization, the algorithm
has successfully generated trajectories that not only minimize the travel time but also consider
energy efficiency and joint acceleration. This holistic optimization contributes to achieving a well-
balanced and efficient motion profile for the robot. The comparative analysis with other
optimization techniques underscores the advantages of the MOPSO algorithm in achieving
superior trajectory planning outcomes. The ability to handle multiple objectives simultaneously
provides a versatile and robust solution for optimizing complex robotic motions. The proposed
method takes into account the dynamic nature of the robot and the constraints associated with time-
optimal trajectory planning. The consideration of joint acceleration contributes to the overall
stability and efficiency of the robot's movements. In future work, further enhancements and
refinements can be explored to adapt the algorithm to specific robotic platforms, environmental
conditions, or task requirements.the research provides valuable insights into the potential of multi-
objective optimization techniques for enhancing the performance of 6-DOF robots in trajectory
planning scenario.

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5248

References

1. Agustí-Juan I, Müller F, Hack N, Wangler T, Habert G (2017) Potential benefits of digital
fabrication for complex structures: environmental assessment of a robotically fabricated
concrete wall. J Clean Prod 154:330

2. Krieg OD, Schwinn T, Menges A, Li JM, Knippers J, Schmitt A, Schwieger V (2015)
Biomimetic lightweight timber plate shells: computational integration of robotic
fabrication, architectural geometry and structural design. Advances in architectural
geometry 2014. Springer, Cham, pp 109–125

3. Suqin He; Chuxiong Hu; Shize Lin; Yu Zhu (2022) An Online Time-Optimal Trajectory
Planning Method for Constrained Multi-Axis Trajectory With Guaranteed Feasibility IEEE
Robotics and Automation Letters, Volume: 7, Issue: 3,Journal Article DOI:
10.1109/LRA.2022.3183536

4. Wenjie Wang; Qing Tao; Yuting Cao; Xiaohua Wang; Xu(2020) Zhang Robot Time-
Optimal Trajectory Planning Based on Improved Cuckoo Search Algorithm IEEE Access
Volume: 8 ,DOI: 10.1109/ACCESS.2020.2992640

5. Yalun Wen; Prabhakar Pagilla(2023) Path-Constrained and Collision-Free Optimal
Trajectory Planning for Robot Manipulators IEEE Transactions on Automation Science
and Engineering ,Volume: 20, Issue: 2 ,DOI: 10.1109/TASE.2022.3169989

6. Lizhen Xia (2023) Trajectory Planning Application of Rehabilitation Robots Based on
Improved CSA Algorithm IEEE Access,Volume:11:IEEE DOI:
10.1109/ACCESS.2023.334 734

7. Xiao Hu; Heng Wu; Qianlai Sun; Jun Liu (2023) Robot Time Optimal Trajectory Planning
Based on Improved Simplified Particle Swarm Optimization Algorithm IEEE
Access,Volume: 11 ,Journal Article ,DOI: 10.1109/ACCESS.2023.3272835

8. Peiyao Shen; Xuebo Zhang; Yongchun Fang; Mingxing Yuan (2020) Real-Time
Acceleration-Continuous Path-Constrained Trajectory Planning With Built-In Tradeoff
Between Cruise and Time-Optimal Motions IEEE Transactions on Automation Science
and Engineering ,Volume: 17, Issue: 4,Journal Article,DOI: 10.1109/TASE.2020.298042

9. Alessandro Palleschi; Riccardo Mengacci; Franco Angelini; Danilo Caporale; Lucia
Pallottino; Alessandro De Luca; Manolo Garabini (2020)Time-Optimal Trajectory
Planning for Flexible Joint Robots IEEE Robotics and Automation Letters ,2020 Volume:
5, Issue: 2 ,DOI: 10.1109/LRA.2020.2965861

10. Juncheng Li; Maopeng Ran; Lihua Xie (2021) Efficient Trajectory Planning for Multiple
Non-Holonomic Mobile Robots via Prioritized Trajectory Optimization IEEE Robotics
and Automation Letters,2021,Volume6, Issue: 2,IEEE DOI: 10.1109/LRA.2020.3044834

11. Chen Zhang; Yibin Li; Lelai Zhou (2022) Optimal Path and Timetable Planning Method
for Multi-Robot Optimal Trajectory IEEE Robotics and Automation Letters Year: 2022 |
Volume: 7, Issue: 3 | Journal Article | Publisher: IEEE DOI: 10.1109/LRA.2022.3187529

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5249

12. Eric Barnett; Clément Gosselin A Bisection Algorithm for Time-Optimal Trajectory
Planning Along Fully Specified Paths IEEE Transactions on Robotics Year: 2021 |
Volume: 37, Issue: |Journal Article | Publisher: IEEE DOI: 10.1109/TRO.2020.3010632

13. Wenzheng Chi; Chaoqun Wang; Jiankun Wang; Max Q.-H. Meng (2019) Risk-DTRRT-
Based Optimal Motion Planning Algorithm for Mobile Robots IEEE Transactions on
Automation Science and Engineering Year: 2019 | Volume: 16, Issue: 3 | Journal Article |
Publisher: IEEE DOI: 10.1109/TASE.2018.2877963

14. Gil Manor; Joseph Z. Ben-Asher; Elon Rimon (2018) “ Time Optimal Trajectories for a
Mobile Robot Under Explicit Acceleration Constraints” IEEE Transactions on Aerospace
and Electronic Systems Year: 2018 | Volume: 54, Issue: 5 | Journal Article | Publisher:
IEEE DOI: 10.1109/TAES.2018.2811158

15. Hean Hua; Yongchun Fang; Xuetao Zhang; Chen Qian A Time-Optimal Trajectory
Planning Strategy for an Aircraft With a Suspended Payload via Optimization and Learning
Approaches IEEE Transactions on Control Systems Technology Year: 2022 |
Volume:30,Issue: 6 |Journal Article | Publisher: IEEE DOI: 10.1109/TCST.2021.3139762

16. Yi Liu; Chen Guo; Yongpeng Weng Online Time-Optimal Trajectory Planning for Robotic
Manipulators Using Adaptive Elite Genetic Algorithm With Singularity Avoidance IEEE
Access Year: 2019 | Volume: 7 | Journal Article | Publisher: IEEE

17. Vincenzo Petrone; Enrico Ferrentino; Pasquale Chiacchio Time-Optimal Trajectory
Planning With Interaction With the Environment IEEE Robotics and Automation Letters
Year: 2022 | Volume: 7, Issue: 4 | Journal Article | Publisher: IEEE DOI:
10.1109/LRA.2022.3191813

18. Shreyas Kousik; Bohao Zhang; Pengcheng Zhao; Ram Vasudevan Safe, Optimal, Real-
Time Trajectory Planning With a Parallel Constrained Bernstein Algorithm IEEE
Transactions on Robotics Year: 2021 | Volume: 37, Issue: 3 | Journal Article | Publisher:
IEEE DOI: 10.1109/TRO.2020.3036617

19. Peiyao Shen; Xuebo Zhang; Yongchun Fang Tree-Search-Based Any-Time Time-Optimal
Path-Constrained Trajectory Planning With Inadmissible Island Constraints IEEE Access
Year: 2019 | Volume: 7 | Journal Article | Publisher: IEEE DOI:
10.1109/ACCESS.2018.2886233

20. Gasparetto A, Boscariol P, Lanzutti A, Vidoni R (2015) Path planning and trajectory
planning algorithms: A general overview. Motion and operation planning of robotic
systems. Springer, pp 3–27

21. Kyriakopoulos KJ, Saridis GN (1988) Minimum jerk path generation. In: Proceedings.
1988 IEEE international conference on robotics and automation. IEEE, pp 364–369

22. Gasparetto A, Zanotto V (2007) A new method for smooth trajectory planning of robot
manipulators. Mech Mach Theory 42(4):455

23. Sato A, Sato O, Takahashi N, Kono M (2007) Trajectory for saving energy of a direct-
drive manipulator in throwing motion. Artif Life Robot 11(1):61

A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 6 No. 1 (2024)

© 2024 The Authors

5250

24. Luo LP, Yuan C, Yan RJ, Yuan Q, Wu J, Shin KS, Han CS (2015) Trajectory planning for
energy minimization of industry robotic manipulators using the Lagrange interpolation
method. Int J Precis Eng Manuf 16(5):911

25. Balkan T (1998) A dynamic programming approach to optimal control of robotic
manipulators. Mech Res Commun 25(2):225

26. Shiller Z (1996) Time-energy optimal control of articulated systems with geometric path
constraints. J Dyn Syst Meas Control 118(1):139. https://doi.org/10.1115/1.2801134

27. Gasparetto A, Zanotto V (2008) A technique for time-jerk optimal planning of robot
trajectories. Robot Comput Integr Manuf 24(3):415

28. Zanotto V, Gasparetto A, Lanzutti A, Boscariol P, Vidoni R (2011) Experimental
validation of minimum time-jerk algorithms for industrial robots. J Intell Robot Syst
64(2):197

29. Ata AA, Myo TR (2005) Optimal point-to-point trajectory tracking of redundant
manipulators using generalized pattern search. Int J Adv Robot Syst 2(3):24

30. Saravanan R, Ramabalan S, Balamurugan C (2008) Evolutionary optimal trajectory
planning for industrial robot with payload constraints. Int J Adv Manuf Technol 38(11–
12):1213

31. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95.
Proceedings of the sixth international symposium on micro machine and human science.
IEEE, pp 39–43

32. Zhao Q, Yan S (2005) Collision-free path planning for mobile robots using chaotic particle
swarm optimization. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation.
ICNC 2005. Lecture notes in computer science, vol 3612. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11539902_77

33. Zhang Y, Gong DW, Zhang JH (2013) Robot path planning in uncertain environment using
multi-objective particle swarm optimization. Neurocomputing 103:172

34. Davis L (1991) Handbook of genetic algorithms
35. Liao X, Wang W, Lin Y, Gong C (2010) Time-optimal trajectory planning for a 6R jointed

welding robot using adaptive genetic algorithms. In: 2010 International conference on
computer, mechatronics, control and electronic engineering, vol 2. IEEE, pp 600–603

36. Sha Luo† Dianming Chu Qingdang Li Yan He(2022) Inverse Kinematics Solution of 6-
DOF Manipulator Based on Multi-Objective Full-Parameter Optimization PSO Algorithm
Volume 16 - 2022 | https://doi.org/10.3389/fnbot.2022.791796

37. Jing Xu Chaofan Ren and Xiaonan Chang (2023) Robot Time-Optimal Trajectory
Planning Based on Quintic Polynomial Interpolation and Improved Harris Hawks
Algorithm Jing Xu Chaofan Ren and Xiaonan Chang , Axioms 2023, 12, 245.
https://doi.org/10.3390/axioms12030245

