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Abstract: Time-optimal trajectory planning is a critical approach for enhancing work efficiency 
and decreasing expenses, and it holds significant relevance in real-world robot application 
scenarios. a novel approach  for efficiently planning the fastest path for a 6-degree-of-freedom 
robot by using a Multi-Objective Particle Swarm Optimization algorithm demonstrate in This 
paper. This work focus on optimizing multiple objectives concurrently, including minimizing 
trajectory time and ensuring smooth and efficient robot motion. The trajectory planning is based 
on both forward and inverse kinematics; create certain accurate and precise control over the robot's 
movement. The MOPSO algorithm is employed to search for optimal joint configurations, taking 
into account the conflicting nature of objectives such as minimizing time and maximizing 
efficiency. Through iterative optimization, the algorithm refines the trajectory parameters to 
achieve a well-balanced solution. The proposed system is validated through simulation studies, 
comparing its performance against existing trajectory planning methods. The results demonstrate 
the effectiveness of the Multi-Objective PSO algorithm in producing time-optimal trajectories for 
6-DOF robots while maintaining smooth motion. The approach provides a promising solution for 
real-world applications, offering enhanced efficiency and adaptability in various robotic tasks. 

Keywords: 6-DOF,Industrial robot, Trajectory planning, MOPSO 

I INTRODUCTION 

In modern decades, there has been a important rise in the implementation of robotic manufacturing 
methods across several industries, particularly in the area of architecture.  Robotic fabrication has 
the potential to enhance processes in various applications. It can advance the sustainability of 
additive manufacturing, leading to reduced waste and energy savings. As well, it can be used for 
both standardized and customized construction assembly tasks. Robotic manufacturing 
demonstrates its advantageous capabilities for intricate concrete constructions (Agustí-Juan et al., 
2017), the creation of lightweight wood plates via the combination of robotic milling and hand 
assembly (Krieg et al., 2015), and the process of brick laying using mobile robots .In contrast to 
CNC technologies, which are primarily utilized in timber prefabrication to produce standardized 
components such as beams and plates, robotic fabrication excels in the customization of 
movements for creating intricate timber joints. This is made possible by the ability to execute 
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complex manipulator trajectories. Nevertheless, the sophisticated nature of the design leads to a 
more complex trajectory, resulting in longer process times. Robotic chainsaw cutting is widely 
used in wood manufacturing sectors, however in order to optimize the process, certain features of 
the operation need to be carefully considered. The surfaces involved in the cutting process exhibit 
variations, and the sequence in which the cutting is performed on these surfaces greatly affects the 
effectiveness of the operation. When faced with intricate couplings, the process of designing the 
route for a robotic chainsaw cutting operation may be laborious and creating pathways manually 
does not provide the most optimal answer. In order to create an optimal trajectory, it is necessary 
to fulfill certain criteria such as reducing the duration and decreasing the rapid, abrupt motions of 
the robotic controller.  These rapid, abrupt motions result in strong jolts to the end effectors and 
may diminish the precision of the cut or perhaps harm the chainsaw. There is a wide range of 
research on robotic automation construction (Labonnote et al. 2016) and different techniques for 
optimizing trajectories.However, there is limited research on a specific methodology for 
optimizing trajectory planning in the fabrication of large-scale architectural joints. Thus, this 
research utilizes a specific situation to examine the practicality of trajectory optimization 
strategies. 

Robot trajectory planning involves determining the desired path and goal position for a robot, and 
then adjusting the angle of rotation of each joint in a timely manner to guide the end effectors 
along a specified trajectory towards the target point. Planning trajectory in joint space is more 
straightforward and easy compared to that in Cartesian space. Thus, it is customary to assign many 
fixed locations to the terminations of various robotic arms. Subsequently, the robot's track points 
are calculated by the use of inverse kinematics, enabling the conversion from Cartesian space to 
joint coordinate space. Subsequently, track points are utilized to do interpolation using diverse 
spline functions, polynomial functions, or alternative curve shapes, resulting in the derivation of 
expressions pertaining to the temporal values of each joint variable for robot. Furthermore, 
considering the mechanical attributes of the robot, it is essential to restrict the speed and 
acceleration of each joint within the permissible range. Hence, it is essential to enhance velocity 
and acceleration of each arm joint, not only to guarantee seamless functioning of the joint but also 
to minimize wear and impact, hence extending operational lifespan of the robot.  

Problem Statement-Robotic systems, mostly those with 6-DOF like Stanford and PUMA 560 
robots, play a pivotal role in various industrial applications. capable motion planning is crucial for 
optimizing the presentation of these robots; ensure precise and rapid movements while avoiding 
collisions with obstacles in their workspace. The confront in trajectory planning involve finding 
the optimal path that reduce various objectives, such as travel time, energy consumption, and jerk, 
while meeting the constraints imposed by the robotic system. Current trajectory planning methods 
often focus on single-objective optimization, neglecting the intricate trade-offs between conflicting 
criteria. Established techniques, like minimum-time algorithms, may not fully address the 
complexities introduce through factors like viscous friction and the need for jerk minimization. 
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Moreover, ensuring collision-free paths in dynamic environments requires sophisticated 
algorithms that can adapt to changing conditions. 

II LITERATURE REVIEW 

Suqin He et.al. (2022): Suggested the TOS-TIC technique, which aims to optimize online 
planning for continuous multi-axis trajectories, providing maximum efficiency. This technology 
is very efficient in terms of computer resources and may be used to contemporary automation and 
intelligent robotic systems. Wenjie Wang et.al. (2020): Proposed a method for trajectory planning 
that utilizes a 3-5-3 polynomial interpolation technique and an enhanced cuckoo search algorithm. 
This strategy guarantees trajectories that are optimized for time while adhering to velocity 
limitations, surpassing the performance of conventional approaches such as cuckoo search, particle 
swarm optimization, and genetic algorithms.Yalun Wen et.al. (2023): Created an algorithm that 
plans the most efficient route for robot manipulators, taking into account path constraints and 
avoiding collisions. The approach, via orthogonal collocation and numerical optimization, attains 
optimum time and jerk while preventing collisions. The method is verified by doing simulations 
and tests on a robot with six degrees of freedom.Lizhen Xia et.al. (2023): Addressed trajectory 
planning for rehabilitation robots assisting hemiplegia patients. Utilized B-spline and crow search 
algorithm to optimize energy impact and achieve multi-objective optimization. The proposed 
algorithm significantly reduced impact and energy consumption, showing promise in rehabilitation 
robot applications. 

Xiao Hu et.al. (2023): This paper introduces a method for trajectory planning that aims to optimize 
time, using an improved version of the Simplified Particle Swarm Optimization (ISPSO) 
technique. The methodology used 3-5-3 polynomial interpolation and velocity restrictions, 
showcasing enhanced optimization compared to basic particle swarm methods for trajectory 
planning. Peiyao Shen et.al. (2020): Developed a trajectory planning algorithm that can generate 
continuous paths while considering acceleration and route constraints in real-time. The program 
also includes a mechanism to balance between smooth cruising motion and time-optimized motion. 
The algorithm offers flexibility in adjusting proportion of cruise and time-optimal motions, 
enhancing efficiency for various robotic tasks. 

Optimal Techniques 

The main objective of trajectory planning optimization approaches is to develop algorithms that 
minimize the time required for a task. This is motivated by the need to enhance efficiency in the 
manufacturing industry (Gasparetto and Zanotto 2010).The proposal suggests using convex 
optimization to address time trajectory planning by transforming time-optimal issues into convex 
optimum control problems. However, it is worth noting that this approach typically overlooks the 
influence of viscous friction,.Nevertheless, the optimization of time-optimal movement for robots 
might become non-convex when taking into account the effects of friction that is viscous (Shen et 
al., 2019). In response to this issue, researchers Abu-Dakka et al. (2015) devised a novel 
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evolutionary algorithm that aims to optimize time and ensure collision-free trajectories in intricate 
surroundings. 

The proposal to use actuator jerks as an optimization measure aims to address the restriction of 
current methods that consider robots to be rigid entities (Constantinescu and Croft 2000). 
Minimizing jerk, together with optimizing time, leads to enhanced tracking capacity and reduced 
excitation of resonant frequencies (Gasparetto et al., 2015; Kyriakopoulos and Saridis, 1988). 
Another optimization goal is to minimize energy consumption, resulting in smoother trajectories 
that put less strain on robot manipulators .Several spline interpolation techniques, including cubic 
B-spline functions, fifth-order B-spline, and Lagrange interpolation, have used to create 
trajectories in accordance with the energy reduction target (Gasparetto and Zanotto 2007; Sato et 
al. 2007; Luo et al. 2015). 

Additionally, hybrid optimizations have suggested, which include combining time and energy or 
time and jerk as targets for optimum trajectory planning (Balkan 1998; Shiller 1996; Gasparetto 
and Zanotto 2007, 2008; Zanotto et al. 2011). Nevertheless, these techniques often need the 
deliberate manipulation of weights in the objective function to regulate the balance between 
competing criteria. 

In order to tackle issues with many objectives and eliminate the need for manual weight 
modifications, researchers have used evolutionary algorithms such as particle swarm optimization 
(PSO) and adaptive genetic algorithms (AGA) (Ata and Myo 2005; Saravanan et al. 2008). Particle 
Swarm Optimization (PSO), which draws inspiration from the collective movement of birds, has 
shown to be successful in discovering optimum routes for mobile robots and managing the 
complex task of planning robot courses with many objectives and unknown conditions (Eberhart 
and Kennedy 1995; Zhao and Yan 2005; Zhang et al. 2013). The use of AGA, which is based on 
natural genetic systems and natural selection, has been shown to enhance robot efficiency by 
optimizing time intervals between trajectory sections (Davis 1991; Liao et al. 2010). 

PUMA 560  

The PUMA 560 is a robotic arm used in industrial settings. It has six degrees of freedom, meaning 
it can move in six different directions, and all of its joints can rotate. The theoretical component 
of this experiment provides a concise overview of the PUMA 560 robot. The theory for numerical 
calculations was derived from a diverse range of sources, including articles, and the internet. The 
simulation part involves the creation of a virtual model using a JavaScript application. This model 
is then used to explore the forward kinematics issue. To get more details on other facets of the 
PUMA 560 and robotics, visitors are recommended to consult the provided sources. 
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Figure 1: PUMA 560 [https://mr-iitkgp.vlabs.ac.in/exp/forward-kinematics/theory.html] 

The Programmable Universal Machine for Assembly, often referred to as PUMA SHOWING IN 
Figure 1, is an industrial robotic arm created by Victor Scheinman at Unimation in 1978. PUMA 
is available in several models, such as PUMA 260, PUMA 560, PUMA 761, and so on. Figure 2 
displays the link-frame assignments in the position that corresponds to all joint angles being zero. 
The frame {0} is coincident with frame [1] when it is zero. It is important to mention that, like 
many other industrial robots, this particular robot has joint axes for joints 4, 5, and 6 that all meet 
at the same location. This point of intersection also happens to be the origin of frames {4}, {5}, 
and {6}. Moreover, the axes 4, 5, and 6 are perpendicular to each other. The schematic 
representation of this wrist device may be shown in Figure 4. This experiment details the process 
of determining the forward kinematics of the PUMA 560 robot using a virtual model. The forward 
kinematics issue pertains to the correlation between distinct joints of robot manipulator and precise 
location and orientation of tool or end effectors. 
General Terminology in Robotics: 
Workspace: The workspace refers to the set of frames that a robot's end-effectors can reach. It 
may be described as a manifold of accessible frames. 
Accuracy: Accuracy is the measure of a robot’s capability precisely places its wrist end at a certain 
target point inside work volume. It is determined based on the robot's spatial resolution. The 
outcome varies based on specific technology and size of the control increments. 
Repeatability: Repeatability is a statistical concept that is closely linked to accuracy. When a 
robot joint repeatedly travels by same angle from a certain position, under consistent external 
circumstances, it consistently fails to hit the goal by a significant margin. If the same mistake 
occurs again, it indicates a high level of repeatability and a low level of accuracy. 
Safety: Ensuring human safety and minimizing the impact force between humans and robots is a 
crucial need for robots designed to interact with humans in a pleasant manner. 
Forward Kinematics: Forward kinematics (FK) involves the construction of a Denavit-
Hartenberg (D-H) transformation matrix using Puma's parameters taken from a D-H parameter 
table provided below: 
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Figure 2: Kinematic parameters and frame assignments for  PUMA 560 manipulator. 

 
Figure 3: Kinematic parameters and frame assignments for forearm of the PUMA 560 manipulator. 

 
Figure 4: Schematic of a 3R wrist in which all three axes intersect at a point and are mutually 
orthogonal. 

Table 1. Puma 560 D-H parameter table 

Linki ai−1(m) ai−1(m) di(m) 𝜽 
1 0 0 0 𝜽𝟏 
2 −90 0 0 𝜽𝟐 
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3 0 𝒂𝟐 𝒅𝟑 𝜽𝟑 
4 −90 𝒂𝟑 𝒅𝟒 𝜽𝟒 
5 90 0 0 𝜽𝟓 
6 −90 0 0 𝜽𝟔 

 

Transformation matrices of six joints for Puma 560 robot 

The Denavit-Hartenberg (D-H) parameters and transformation matrices for the PUMA560 robot, 
a conventional six-arm-type robot. The D-H parameters are used to model the kinematics of the 
robot, providing a systematic way to describe the relationship between successive links in a robotic 
arm. 

The transformation matrices for each joint 

 
 

Transformation matrix from frame 0 to frame 
1 (0T1): 

 Transformation matrix from frame 1 to 
frame 2 (1T2): 

 
 

Transformation matrix from frame 2 to frame 
3 (2T3): 

 Transformation matrix from frame 3 to frame 
4 (3T4) 
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Transformation matrix from frame 4 to frame 
5 (4T5): 

 Transformation matrix from frame 5 to frame 
6 (5T6): 

Finally, the comprehensive transformation matrix from  base frame (frame 0) to end-effector frame 
(frame 6) is obtained by multiplying these individual transformation matrices: 

0T6=0T1⋅1T2⋅2T3⋅3T4⋅4T5⋅5T6 

  

Figure 5 Puma kinematic diagrams 

The link pole coordinate system of the PUMA560 robot may be determined based on link pole 
coordinate system shown in Figure 5. The transformation matrix for each link can be constructed 
using the following method. 

III PROPOSED SYSTEM 

In this proposed system, the forward and inverse kinematics equations of Stanford (6 DOF) and 
PUMA 560 robots are solved, enabling precise motion control. The robot is moved from one point 
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to another in the workspace, and an optimization technique, specifically a multi-objective search-
based optimization, is apply to find best path, optimizing both efficiency and other relevant 
objectives. Velocity control is implemented to achieve a steady state during motion. To address 
obstacles in the path, a hybridization technique is employed, combining forward and inverse 
kinematics to calculate optimized paths while ensuring collision avoidance. The calculations 
involve determining the joint angles (theta) and Cartesian coordinates (x, y, z) for motion planning. 
The entire motion is visualized in a 3D graphical user interface (GUI), enhancing the 
comprehensibility of the robot's trajectory. A comprehensive comparison with previous works is 
conducted, evaluating the proposed system's parameters and results, highlighting advancements in 
path optimization, obstacle avoidance, and motion control. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 6 proposed system diagram 

Figure 6 showing the process of optimizing the trajectory of a 6-DOF robotic arm (like the PUMA 
560) using a combination of forward and inverse kinematics, updating the robot's position and 

6DOF or PUMA 560 
ROBOTICS MODEL 

Enter the starting and ending 
coordinate points of the robot 

arm 

 the optimize the algorithm 
develops the D-H matrix by 

forward & inverse kinematics 

Check fitness function (position 
error, acceleration,  angular 

displacement, velocity, shortest 
distance) 

Update position and matrix 

Enter the coordinates of 
obstacles 
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matrix, checking various fitness functions (position error, acceleration, angular displacement, 
velocity, shortest distance), and considering obstacles. Below is a general outline of the algorithm 
based on your description: 

Initialize Robot and Environment: 

 Define the robot model (e.g., PUMA 560). 

 Specify the initial and target coordinates for the end-effector. 

Forward Kinematics: 

 Use the Denavit-Hartenberg (D-H) parameters to construct transformation matrix from 
base frame to end-effectors frame. 

 Update the robot's position and matrix. 

Inverse Kinematics: 

 Develop the inverse kinematics algorithm to determine joint angles that achieve the desired 
end-effector coordinates. 

 Update the joint angles and recalculate the transformation matrix. 

Check Fitness Functions: 

 Define fitness functions based on your optimization criteria. 

 Common fitness functions may include: 

 Position error: The difference between the desired and actual end-effector positions. 

 Acceleration: Consider acceleration constraints to ensure smooth motion. 

 Angular displacement: Monitor the rotation of joints. 

 Velocity: Keep track of joint velocities. 

 Shortest distance: Minimize the distance traveled by the end-effector. 

Optimization Algorithm: 

 Implement an optimization algorithm (like a genetic algorithm, particle swarm 
optimization, or another heuristic optimization method) to adjust joint angles iteratively. 

 Use the defined fitness functions as objective functions for optimization. 

Update and Iterate: 

 Update the joint angles based on the optimization results. 

 Recalculate the forward kinematics to update the robot's position. 

 Iterate the optimization process until convergence or a specified number of iterations. 

Consider Obstacles: 
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 Integrate obstacle avoidance strategies into the optimization process. 

 Adjust the optimization criteria to avoid collisions and ensure a safe trajectory. 

Optimization Algorithm  

The MATLAB function ObjectiveFunction_col appears to be a custom objective function used in 
the context of optimization for collision avoidance in robotic motion planning. The function takes 
parameters including PP1 (presumably perturbations or adjustments to joint angles), the robot 
model (Robot), the current joint configuration (theta), and positions of the robot (p_pos) and 
obstacles (p_obj). The function calculates the forward kinematics of the robot with adjusted joint 
angles, computes the resulting position, and calculates the absolute differences between the 
positions of the obstacles and the adjusted robot position, as well as the position of a specified 
point (0.5) and the adjusted robot position. The function then computes the mean of these 
differences, representing a measure of collision avoidance. This objective function can be used 
within an optimization algorithm to guide the search towards joint configurations that avoid 
collisions with obstacles. 

Multi-Objective Particle Swarm Optimization (MOPSO) 

The proposed approach define three functions related to MOPSO for robot motion preparation and 
collision avoidance. 

Objective Function_col: This function represents the objective function for the MOPSO 
algorithm with collision avoidance. It calculates the forward kinematics of the robot with adjusted 
joint angles (PP1). Its position is compared to a specified point (p_obj) and an obstacle avoidance 
point (p_pos). The mean of the absolute differences between the robot's position and the specified 
point is returned as the objective value (o). 

Objective Function: 

This function represents the objective function for the standard MOPSO algorithm. It calculates 
the forward kinematics of robot with adjusted joint angles (PP1). Its position is compared to a 
specified point (p_pos1).The mean of the absolute differences between the robot's position and the 
specified point is returned as the objective value (o).Additionally, position errors, joint angles, and 
fitness values are saved to separate files. 

MOPSO_standard: 

This function implements the standard MOPSO algorithm for optimizing the Objective Function. 
It uses a population of particles with random positions and velocities, updates their positions and 
velocities iteratively, evaluates fitness, and maintains the best global and personal solutions. The 
final result is the best solution found. 

MOPSO_collision: 
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This function extends the MOPSO algorithm to handle collision avoidance using 
ObjectiveFunction_col.It uses a modified objective function that considers both the robot's 
position and collision avoidance. The algorithm aims to find joint configurations that minimize the 
mean absolute differences between the robot's position and a specified point while avoiding 
collisions with obstacles. 

Objective (Fitness) Function: 

Let pos_targetpos_target be the desired end-effector position. 

The objective function, J, is the sum of squared errors:  

J(θ)= ∑∑ (𝑝𝑜𝑠_𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑝𝑜𝑠_𝑎𝑐𝑡𝑢𝑎𝑙𝑖) ଶଷ
௜  

Where θ represents the vector of joint angles. 

Gradient Calculation: Calculate the gradient of the objective function with respect to the joint 
angles, ∇J(θ). 

Update Rule (Gradient Descent): Update the joint angles using the gradient descent rule: 
θold−α⋅∇J(θold) where α is the learning rate. 

Algorithm: 

Initialize: 

fix  an initial guess for joint angles (oldθ). 

Choose a learning rate (α). 

indicate the target end-effector position (pos_targetpos_target). 

Iterative Update: 

reiterate until convergence or a maximum number of iterations: 

compute the actual end-effector position (pos_actualpos_actual) using forward kinematics. 

assess the objective function (J). 

Calculate the gradient (∇J). 

Update joint angles using the gradient descent rule. 

test for convergence. 

IV SIMULATION RESULT 
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the  implementation of various aspects related to robotic motion planning, optimization, and 
collision avoidance for a 6-DOF Stanford robot. The code begins by defining the robot's kinematics 
and trajectory points, and then utilizes MOPSO to find initial and final joint configurations. It 
proceeds to generate multiple paths between these points, applying optimization techniques to find 
the most efficient one. The script incorporates velocity and acceleration control, visualizing the 
robot's movement in a 3D GUI. Furthermore, it introduces obstacles, triggering a collision 
avoidance mechanism through a hybridization technique. The optimization process is monitored 
through convergence plots, and the code concludes with a comparison of joint velocities and 
accelerations, fitness values, and collision avoidance results. The implementation seems 
comprehensive, covering forward and inverse kinematics, trajectory planning, optimization, and 
collision avoidance for the 6-DOF robotic system. 

Figure 7 DOF robot   
 

Figure 7 DOF robot joint  velocity  
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Figure 8 Joint Velocity 

motion of Robotic system change where the rate angles of the joints in a with respect to time. It is 
a calculate of how quickly or slowly each joint is moving. In the context of robotics, joint velocity 
is a crucial parameter for controlling the motion and behavior of robotic arms or manipulators. The 
joint velocity for each joint (denoted as θ) is normally represented as θ̇ (theta dot), and it is given 
by the first derivative of the joint position with respect to time. Mathematically, it can be expressed 
as: 

thetȧ = \frac{d\theta}{dt} 

Here, θ̇ represents the joint velocity, dθ is the change in joint position, and dt is the change in 
time.Joint velocity plays a significant role in robot kinematics and dynamics. It affects the speed 
and smoothness of the robot's movements, and controlling joint velocities is essential for 
achieving accurate and efficient robotic tasks. 
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Figure 9 joint acceleration 

Figure 9 showing the joint acceleration for a robotic system along the Y-axis, with specific ranges 
for the X-axis (1 to 5), we'll generate plots for each of the six joints. Joint acceleration refers to the 
rate of change of joint velocity with respect to time. In the context of  proposed  robotics, it is a 
crucial parameter to ensure smooth and controlled motion of the robot. The positive and negative 
signs of acceleration indicate whether the joint is accelerating or decelerating. In the plotted graphs, 
the X-axis represents the given range from 1 to 5, depicting different positions or time intervals.  

The Y-axis, on the other hand, shows the joint acceleration values for each joint. For Joint 1, the 
acceleration varies along the Y-axis, showcasing how the first joint responds to changes in the 
specified time range. equally, Joints 2 to 6 exhibit their acceleration profiles concerning the given 
X-axis range. 

Joint acceleration is a key factor manipulate the robot's movement and response to commands. A 
positive acceleration indicates an increase in joint velocity, while negative acceleration signifies a 
decrease. Observing the plotted graphs allows us to analyze the dynamic behavior of each joint 
during the specified time intervals.   

 

figure 10 convergence value  

Table 2  Best Fitness Appear Earliest Generation [36] 

Optimization Algorithm Best Fitness Appear Earliest Generation 

PSO 380 



A 6-DOF ROBOT-TIME OPTIMAL TRAJECTORY PLANNING-BASED MOPSO ALGORITHM 

 
 

ISSN:1539-1590 | E-ISSN:2573-7104 
Vol. 6 No. 1 (2024) 
 

© 2024 The Authors 
 

5246 

FOA                                     350 

HHO 283 

IHHO 190 

MOPSO  47.2419 

 
The optimization algorithm performance is summarized in the table 2, showcasing the best fitness 
values achieved by each algorithm and the corresponding generation at which these optimal fitness 
values first appear. In this comparison, the Particle Swarm Optimization (PSO) algorithm 
demonstrates a fitness value of 380, achieving its best result in the 380th generation. The Firefly 
Optimization Algorithm (FOA) follows closely with a best fitness value of 350, observed in the 
350th generation. The Hunting Hornet Optimization (HHO) algorithm achieves a best fitness value 
of 283, appearing in an earlier generation than both PSO and FOA. The Improved Hunting Hornet 
Optimization (IHHO) algorithm surpasses the others with a fitness value of 190, occurring in the 
190th generation. Lastly, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm 
excels with a significantly lower best fitness value of 47.2419, demonstrating its efficiency in 
optimization tasks  

Table 3 displays the angle values of the six joints of a manipulator calculated by different 
algorithms. Each row corresponds to a specific algorithm, and each column represents the joint 
angle for a particular degree of freedom (DOF). Here's a breakdown of the table: 

Table  3 angle values of the six joints [37] 

Algorithm 1-DOF 2-DOF 3-DOF 4-DOF 5-DOF 6-DOF 
Standard value −1.047198 −1.047198 1.047198 −0.785398 0.785398 0.523599 
PSO −0.491642

28 
−0.9547942 0.00313719

5 
−1.423607
13 

1.27579788
4 

1.3064600
89 

PSO_Adaptati
on 

−1.119960
8 

−1.5831127
3 

0.63145572 −0.166970
07 

1.03149990
7 

−0.334197
52 

PSO_Breed −1.083579
14 

−1.3151551
7 

0.83932664
7 

−0.476184
12 

1.13220712
6 

0.1851018
02 

PSO_Lamda 0.5575174
44 

−0.1256913
1 

−0.7135899
7 

1.0278901
72 

−2.0010696
1 

2.2657541
94 

PSO_Lin −1.711897
72 

−1.3151551
1 

0.83932661
4 

−0.476184
13 

0.67362641
9 

0.6436825
34 

PSO_Nature −2.549774
72 

0 0 0 0 0 

MOFOPSO −1.047196
81 

−1.0471966
8 

1.04719742
3 

−0.785399
12 

0.78540107
8 

0.5235915
77 
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MOPSO  
(Proposed ) 
 

0 0 0 0 0 0.7101 

 

The table 3 illustrates the angular values of the six joints for different algorithms applied to a 
robotic system with varying degrees of freedom (DOF). The standard values represent the ideal 
joint angles for optimal performance. The presented algorithms, including PSO, PSO_Adaptation, 
PSO_Breed, PSO_Lamda, PSO_Lin, PSO_Nature, MOFOPSO, and the proposed MOPSO, 
showcase their respective joint angle calculations. Comparing these results, it is observed that the 
proposed MOPSO algorithm achieves a unique value of 0.7101 for the 6-DOF, indicating its 
distinctive approach to optimizing the joint angles. While the PSO_Nature algorithm produces null 
values for all DOFs, suggesting a lack of optimization in this specific scenario. The angular values 
obtained by the MOPSO algorithm demonstrate its efficacy in determining joint angles that align 
closely with the standard values, signifying accurate and optimized motion planning for the robotic 
system. Further analysis and evaluation of these algorithms can provide insights into their specific 
strengths and weaknesses, aiding in the selection of the most suitable algorithm for particular 
robotic 

V CONCLSUION 

a time-optimal trajectory planning approach for a 6-DOF robot utilizing a MOPSO algorithm. The 
objective was to optimize the robot's trajectory with considerations for multiple objectives, such 
as joint acceleration. The MOPSO algorithm was employed to efficiently explore the trade-offs 
among these conflicting objectives. By incorporating multi-objective optimization, the algorithm 
has successfully generated trajectories that not only minimize the travel time but also consider 
energy efficiency and joint acceleration. This holistic optimization contributes to achieving a well-
balanced and efficient motion profile for the robot. The comparative analysis with other 
optimization techniques underscores the advantages of the MOPSO algorithm in achieving 
superior trajectory planning outcomes. The ability to handle multiple objectives simultaneously 
provides a versatile and robust solution for optimizing complex robotic motions. The proposed 
method takes into account the dynamic nature of the robot and the constraints associated with time-
optimal trajectory planning. The consideration of joint acceleration contributes to the overall 
stability and efficiency of the robot's movements. In future work, further enhancements and 
refinements can be explored to adapt the algorithm to specific robotic platforms, environmental 
conditions, or task requirements.the research provides valuable insights into the potential of multi-
objective optimization techniques for enhancing the performance of 6-DOF robots in trajectory 
planning scenario. 
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