

HARMONIZING EMOTION: A MULTIMODAL APPROACH TO ANALYZING HUMAN AFFECT IN MUSIC RECOMMENDATION SYSTEMS

Mrs. Ketaki A. Bhosale¹, Dr. Sangram T. Patil²

Assistant Professor¹, Associate Professor²
Department of Computer Science & Engineering^{1,2}
D Y Patil College of Engineering Technology Kolhapur, Maharashtra, India¹, DYP-ATU,
Talsande, Maharashtra, India²
ketakibhosale28@gmail.com¹, sangrampatil@dyp-atu.org²

Abstract:

Music is a worldwide language that everyone throughout the world enjoys. Zatorre and Peretz (2001) state that, musical undertakings with their unique essence appear to have been a part of every recorded society on Earth, dating back at least 250,000 years [1]. As the digital age advances, Customized music suggestion systems are now deeply ingrained in our everyday routines, providing us with a curate's selection of songs that match our preferencesMudit Kumar Tyagi et.al [2]suggested a method for extracting user preferences based on their music listening history. Incorporating demographic information such as age and gender provides a more nuanced understanding of a listener's identity. People of different ages and genders may have unique musical preferences, and these attributes can act as significant filters in the recommendation process. For example, a teenager's taste in music is likely to differ from that of a middle-aged adult. Similarly, gender can play a role in shaping musical choices. Integrating age and gender detection into music recommendation systems ensures that the music offered is not only personally relevant but also age-appropriate and respectful of gender sensitivities. This research proposes a multimodal approach, combining demographic human features and emotional signals, to refine and personalize music selection through advanced machine learning techniques.

Keywords: Music recommendation, Multimodal approach, demographic features

Introduction

The impact of music on human behavior is multifaceted. Studies indicate music significantly influences emotions, spanning joy, excitement, sadness, and nostalgia. Music therapy is employed clinically to address anxiety, depression, and stress, enhancing emotional well-being. Music shapes and reflects cultural identity, influencing social norms and values. Physiologically, music impacts heart rate, blood pressure, and cortical levels.

Personalized traditional music recommendation systems aim to provide users with music suggestions tailored to their individual preferences. Various approaches and algorithms such as Collaborative Filtering, Content-Based Filtering, Hybrid Systems, Matrix Factorization, Deep Learning Models, Knowledge-Based Systems, Context-Aware Recommendation, and Implicit Feedback Models are used individually or in combination depending upon available data, system goals, and the desired level of personalization.

From the various mentioned approaches there are three main approaches to customize music recommendations: collaborative filtering (CF) [3], content-based (CB) [4], and hybrid [5]. Based on the songs that users have listened to in the past, CB suggestions present similar songs to them. CF recommendations make music recommendations to users based on an analysis of the listening preferences of people with similar tastes. The hybrid method combines the insights from both the CF and CB methodologies to provide personalized music recommendations. Following table compares the three approaches in music recommendation system

Music Recommender System	Data Working Source	Technology Used	Website
Content Based Recommendation	Uses the user's historical data and takes into account the audio's inherent characteristics.	Gaussian Mixture Models (GMM) & Word Frequency Mining (WFM)	Shrimps Music
Collaborative Filtering Recommendation	Consider the users rating for a particular music.	Association Rule, KNN, Clustering, DecisionTree, Regression, CNN	Last FM music station
Hybrid Approach Recommendation	Combines the approaches of different music recommendation systems	Combination of content and collaboration Techniques	7HCCMR

Table 1: Summary of different approaches for Music Recommendation System

Demographic features, such as age, gender, and emotion can be valuable in understanding and enhancing personalized music recommendations. Considerable research has utilized deep learning techniques like Convolutional Neural Networks (CNN) and Artificial Neural Networks (ANN) for age, gender estimation, and emotion detection. Within CNN, Feature extraction identifies age, gender, and emotion-related features. Additionally, Feature classification in CNN categorizes facial images accurately into age groups, genders, and emotions such as happiness, sadness, anger, and neutrality.

The music recommendation problem can be divided into two sub problems first is Forecasting i.e predicting the likely music for a user and second is recommending or suggesting the list of probable music, the user loves to listen.

Forecast: Let $I = \{i_1, i_2,, i_n\}$ be the set of all possible items that can be recommended (a goal music collection), and let $U = \{u_1, u_2, ..., u_m\}$ be the set of all users. Every user interface demonstrated interest in a certain set of goods. $Iu_i \subseteq I$.

Suggestion: Calculate the function Pua, ij,an anticipated preference which denotes that itemij∉Iua for the active user ua

Literature Review:

Research in various areas is made to detect age, gender and emotions of the people. While some of the researchers took audio, others used image capture to extract features before conducting analysis. The following table depicts the summary for publication papers related to age, gender & emotion detection systems.

ISSN:1539-1590 | E-ISSN:2573-7104 Vol. 6 No. 2 (2024)

© 2024 The Authors 319

Paper No	Objectives	Method Used	Findings
[6] (2023),	The main focus	The HOG-Viola-	A complete
[7] (2022),	of the article is	Jones algorithm	survey of techniques
[8](2020),	on using facial	demonstrates high	for age, gender, and
[9](2020).	photos to assess	accuracy in age,	emotion classification
	age, gender, and	gender, and	was reviewed
	emotions in real	emotion	The Viola-
	time.	recognition.	Jones algorithm serves
			for object detection
		•Recognition tasks	and face detection
		employed CNN	purposes.
		along with	Local Binary Pattern
		algorithms such as	(LBP) finds application
		AdaBoost, PCA,	in texture classification
		HOG, LBP,	and real-time image
		HAAR, FPLBP,	analysis.
		and LDA.	
[10](2022)	• The	• The	• Complement
[11](2020)	paper compares	utilized methods	Naive Bayes
[12](2016)	nine conventional	encompass	outperforms Random
	learning methods	Complement	Forest and Decision
	for mood	Naive Bayes,	Tree in detecting mood
	detection.	Random Forest,	variations.
	Mood classifiers'	Decision Tree, and	• Simple
	efficacy is	classifiers.	classifiers can be used
	evaluated using	 Gaussian 	for studying mood
	Twitter data	classifiers ,Multi-	patterns in individuals.
	pertaining to	class and rule-	• Deep learning
	COVID-19.	based, Bayesian	algorithms can be
	System	were employed.	studied for classifying
	recommends	 Binary classifiers 	text based on moods.
	songs based on	were adapted for	
	user's mood and	multi-class	
	preferences	categorizations.	

[13](2020)	• The aim	ReLU(Rectified	 Proposed
[14](2010)	of the paper is to	Linear Unit),	model predicts
[15](2018)	detect emotions	CNN(Convolution	sentiment based on
	in real-time using	al Neural	video information.
	webcam images.	Network),	 Resulting
	• Features	Max-Pooling	output can be used to
	are extracted	Circular Local	address mental
	from facial	Binary Pattern,	disorders and stress.
	landmarks for	KNN(K-Nearest	
	emotion	Neighbors)	
	detection.	Logistic	
		Regression	
		Image Recognition	
		Feature Extraction	
[2](2014)	Music	Two case studies,	 Collecting
	Information	Emotify and	data through
	Retrieval (MIR)	Hooked, were	online
	was designed	established for	multiplayer
	using two case	gathering data in	games for
	studies	the field of Music	music
		Information	research.
		Retrieval (MIR).	 Developing
		Emotify	games to
		specializes in	annotate
		emotional	music
		annotation of	emotionally
		music.	and
		Hooked explores	investigating
		musical	musical
		catchiness.	catchiness.

[17](2015)	The voice-based	Principal	The system discerns
[1/](2013)		^	
	speaker	component	the age and emotions
	processing	analysis (PCA),	of speakers,
	system is	Meel frequency	considering gender
	investigating	cepstral	differences.
	speaker attributes	coefficients	The proposed system
	such as age and	(MFCCs),Gaussian	aims to enhance
	emotions	mixture model	human-computer
	(including stress	(GMM)	interaction.
	and mood),		
	which may vary		
	depending on		
	gender.		
[18](2020)	To achieve the	Meel frequency	The
	highest	cepstral	framework
	accuracy in	coefficients	preprocesses
	predicting	(MFCC), Multi-	the audio data
	emotions among	layer Perceptron	and identifies
	individuals	classifier	emotions
	experiencing	(MLPC)	using the
	depression.		MLP
	depression.		
			classifier.

[19](2014)	Introduces a	Support Vector	The system is
, ,	system capable	Machine (SVM)	composed of
	of discerning an	classifiers ,Pitch	two
	individual's	Frequency	subsystems: 1)
	emotional state	Estimation	emotion
	from recorded	method	recognition
		memou	(ER)
	audio signals.		2) gender
			recognition
			(GR)
			The
			experimental
			findings
			underscore
			that
			integrating
			the Gender
			Recognition
			(GR)
			subsystem
			enhances the
			overall
			accuracy of
			emotion
			recognition
			from 77.4%
			to 81.5%.
			w o1.3%.

Table 2: Summary for age, gender and emotion recognition

Proposed System

The proposed system can identify emotions more accurately by combining information from multiple modalities, including text analysis, speech tonality, and facial expressions. When combined, the distinct insights from each modality can provide a more thorough picture of the user's emotional state. The accuracy, resilience, and user experience of the system can be greatly improved by using a multimodal approach to emotion recognition and music selection. This will result in interactions that are more engaging, natural, and sympathetic.

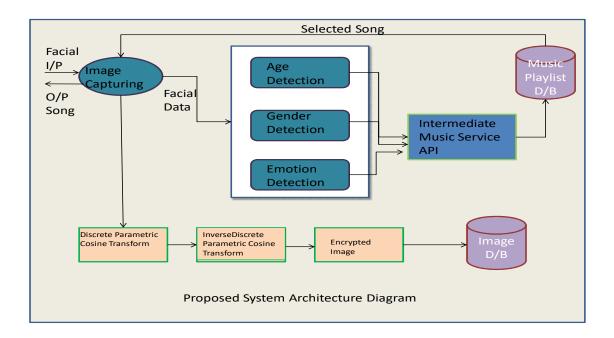


Fig 1: Proposed System Architecture Diagram

The Proposed system can be explained using following terms:

Multimodal Approach: A multimodal approach involves combining information from multiple modes or modalities to enhance understanding, representation, or interaction in a system. The study encompasses the collection of diverse user data such as age ,gender along with emotional signals captured using multiple modalities, such as facial expressions, physiological responses, and user-provided emotional labels this data can be audio ,video or text.

Dataset creation:

The image, gender and emotion dataset will be collected from IMDB-WIKI Dataset, LFW (Labeled Faces in the Wild) Dataset, AffectNet Dataset. After working on these three datasets some real time images of people with different ages, gender and various facial expressions will be collected.

Age Detection:

Machine learning and deep learning models will be utilized for age detection. Common deep learning architectures such as Convolution Neural Networks (CNNs) or recurrent networks can be utilized for detecting age from both image and voice data. A deep learning architecture called a convolution neural network (CNN) is made to learn straight from data. It is a kind of artificial neural network that is widely used for object and picture categorization and recognition. Deep Learning is able to recognize things in photos by using CNNs. These networks are essential for many applications, including speech recognition in natural language processing, video analysis, obstacle recognition in autonomous cars, image processing, and computer vision tasks like segmentation and localization.

In a CNN, the input layer receives image pixels arranged in arrays. Multiple hidden layers within CNNs engage in feature extraction from the image through various operations such as convolution, pooling, rectified linear units, and fully connected layers. The convolution layer initiates the feature extraction process from the input image. Finally, the fully connected layer categorizes and identifies the object, producing the output layer.

Gender and Emotion Detection:

Machine learning models, such as deep learning models like CNNs or Support Vector Machines (SVM) for gender detection from audio and visual data is widely used. For Emotion Detection CNNs for facial expression analysis.

Music recommendation algorithms:

After identification of the age, gender along with emotions such as happiness, surprise, anger, neutrality, and sadness The system provides a curates playlist of music that matches the detected mood and the other parameters. Algorithms like collaborative filtering, content-based filtering, and hybrid methods, take into account the user's age, gender, and emotional state to generate personalized music recommendations.

Providing user privacy & Feedback Mechanism:

Implement strict privacy protection mechanisms to safeguard user data of captured image used to detect gender, age, and emotion as this data can be sensitive. The captured image can be encrypted Discrete Parametric Cosine Transform (DPCT) algorithm. The 2D DPCT, a sophisticated cosine transform, necessitates 12 parameters, posing challenges in real-world applications. Nonetheless, these parameters enhance the potency of the 2D DPCT, furnishing it with robust characteristics.

Summary:

This review study delves into the nascent domain of multimodal techniques in music recommendation systems, emphasizing three crucial demographic aspects: age, gender, and emotion. It compiles recent findings and approaches that use several modalities, including user listening history, lyrics, audio content analysis, and contextual information from social media. Accurately recognizing gender, emotional state, and age group through these multimodal methodologies presents both potential and challenges; advances in machine learning algorithms and feature extraction techniques are highlighted. It also looks at the effects of using this kind of demographic data in music recommendation algorithms, such as better user experiences and customized playlists. All things considered, the research highlights how multimodal methods can be used to customize music recommendations based on complex demographic preferences, opening the door to more advanced and user-focused music recommendation systems.

References:

[1] I. Eibl-Eibesfeldt, "The Biological Foundation of Aesthetics," Beauty and the Brain, pp.29–68, 1988, doi: 10.1007/978-3-0348-6350-63

- [2]Mudit Kumar Tyagi , Muhammad Ali , Garvit Kaim , Tripti Lamba , Gunjan Chugh ,"Music Recommendation System Using Multiple Machine Learning Models" International Conference on Innovative Computing & Communication (ICICC) 2023
- [3] Content-Based Recommendation Systems Michael J. Pazzani& Daniel Billsus Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4321))
- [4] J. Ben Schafer, D. Frankowski, J. Herlocker, and S. Sen, "LNCS 4321 Collaborative Filtering Recommender Systems," no. January 2007, 2014.
- [5] Hybrid Web Recommender Systems Robin Burke Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4321))
- [6] Smart Facial Emotion Recognition With Gender and Age Factor Estimation Surya Teja Chavali a, *, Charan Tej Kandavallib , Sugash T M c , Subramani R
- [8] Age Prediction using Image Dataset using Machine Learning Vijay Kumar
- [9] REGA: Real-Time Emotion, Gender, Age Detection Using CNN—A Review Dibya JYOTI Sharma Kaziranga University, Sachin Dutta
- [10]Mood detection and prediction using conventional machine learning techniques on COVID19 data Subhayan Bhattacharya1 · Abhay Agarwala1 · Sarbani Roy
- [11]Emotional Detection and Music Recommendation System based on User Facial Expression S Metilda Florence1 and M Uma2
- [12]Emotion Based Music Player XBeats Aditya Gupte, Arjun Naganarayanan, Manish Krishnan
- [13] Human Emotion Detection using Machine Learning Techniques Punidha Angusamy
- [14]Biased emotional recognition in depression: Perception of emotions in music by depressed patients MarkoPunkanen, Tuomas Eerola, and Jaakko Erkkilä.
- [15] An Emotion-Aware Personalized Music Recommendation System Using a Convolutional Neural Networks Approach Ashu Abdul Jenhui Chen Hua-Yuan Liao
- [16] Designing Games with a Purpose for Data Collection in Music Research. Emotify and Hooked: Two Case Studies AnnaAljanaki, Dimitrios Bountouridis, John Ashley Burgoyne, Jan Van Balen, Frans Wiering, Henkjan Honing, and Remco Veltkamp.
- [17] Automatic Speaker Age Estimation and Gender Dependent Emotion Recognition Shivaji J. Chaudhari Ramesh M. Kagalkar
- [18]Emotion and Stress Recognition through Speech Using Machine Learning Models Druva Manasa and C. Kiran Ma
- [19] Gender-Driven Emotion Recognition Through Speech Signals for Ambient Intelligence Applications IGOR BISIO, ALESSANDRO DELFINO, FABIO LAVAGETTO, MARIO MARCHESE, AND ANDREA SCIARRONE