

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1933

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS
OF RUNTIME SECURITY MECHANISMS

V. Mahavaishnavi

Research Scholar, Department of Computer Science and Engineering, Annamalai University
Annamalai Nagar, Chidambaram – 608002, Email: vaishnavipriya95@gmail.com

Dr. R. Saminathan

Associate Professor, Department of Computer Science and Engineering, Annamalai University
Annamalainagar, Chidambaram – 608002, Email: samiaucse@yahoo.com

R. Prithviraj

Research Scholar, Department of Computer Science and Engineering, Annamalai University
Annamalainagar, Chidambaram – 608002, Email: prithviraj0805@gmail.com

ABSTRACT

This research paper presents a comprehensive analysis of runtime security mechanisms in
containerized environments. It evaluates the effectiveness and weaknesses of security measures,
including container isolation, access control, network security, and monitoring tools. The study
explores technical implementation details across popular container orchestration platforms such
as Kubernetes. This paper proposes a novel and innovation approach for runtime security in
containerized environments that leverages decentralized and distributed mesh network
architecture. It covers container isolation techniques, access control mechanisms, network security
solutions, monitoring and auditing tools. The analysis considers practical implications and
challenges of implementing these mechanisms, including trade-offs between security,
performance, and flexibility. It also discusses emerging trends and provides recommendations for
improving container runtime security.

 Keywords - Container, Runtime security, Kubernetes, Docker.
1 INTRODUCTION

Containerization has emerged as a revolutionary approach in the field of software development
and deployment, providing a lightweight and scalable solution to package and run applications
across different computing environments. Containers encapsulate software and its dependencies,
allowing for efficient deployment and isolation while ensuring consistent behaviour across various
infrastructure platforms. The rise of containerized environments can be attributed to the need for
enhanced agility, scalability, and portability in the modern software landscape. Traditional
deployment models often encountered challenges related to the dependencies and configurations
of applications, leading to compatibility issues and difficulties in replicating the exact runtime
environment across different systems. Containerization addresses these concerns by packaging

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1934

applications and their dependencies into self-contained units, ensuring consistency and eliminating
conflicts between various software components.
Moreover, the flexibility offered by containerization enables developers to build applications using
micro services architecture, breaking down complex applications into smaller and loosely coupled
services. Each service can be encapsulated within its own container, enabling independent
development, deployment, and scaling. This approach promotes faster development cycles,
enhances collaboration among teams, and facilitates the efficient scaling of individual services
based on demand. Containerization also plays a vital role in facilitating cloud-native development
practices. By encapsulating applications within containers, organizations can seamlessly migrate
their workloads between different cloud providers or deploy applications across hybrid cloud
environments. This portability allows businesses to take advantage of the diverse offerings and
pricing models of different cloud providers while avoiding vendor lock-in.
Furthermore, the inherent isolation provided by containerization enhances security in software
deployment. Containers employ various techniques, such as process and file system isolation, to
isolate applications from the underlying host and other containers. This isolation mitigates the risk
of malicious activities and minimizes the impact of potential security breaches, providing a secure
runtime environment for applications. The significance of containerized environments extends
beyond the software development realm. The adoption of containerization has transformed the
way DevOps teams operate and collaborate. With containers, developers can package their
applications with all the necessary dependencies, ensuring that the same environment is used
throughout the development, testing, and production stages. This eliminates the notorious "works
on my machine" problem and promotes a consistent and reproducible software delivery process.
Additionally, containerization aligns well with modern infrastructure automation practices, such
as infrastructure as code and Continuous Integration/ Continuous Deployment (CI/CD).
Infrastructure automation tools, combined with container orchestration platforms like Kubernetes,
enable the seamless provisioning, scaling, and management of containerized environments,
reducing manual effort and enabling efficient resource utilization.
1.1 Incorporating Runtime Security in the Container Deployment
Runtime security mechanisms play a critical role in containerized environments, safeguarding
applications and the underlying infrastructure from a wide range of threats and vulnerabilities.
With the increasing adoption of containerization, ensuring the security of containerized
environments has become paramount to protect sensitive data, prevent unauthorized access, and
maintain the integrity of applications and services. One of the primary reasons runtime security
mechanisms are crucial in containerized environments is the dynamic and distributed nature of
container deployments. Containers are highly mobile entities that can be created, destroyed, and
migrated across different hosts or clusters, making them susceptible to various security risks.
Without robust runtime security measures, malicious actors could exploit vulnerabilities in the
container runtime, compromise the host Operating System (OS), or gain unauthorized access to
sensitive resources.

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1935

Container isolation, a fundamental aspect of runtime security, ensures that containers operate in
isolated environments, separate from the host and other containers. By enforcing strict boundaries,
container isolation prevents unauthorized access to resources, restricts inter-container
communication, and mitigates the risk of lateral movement within the containerized environment.
Access control mechanisms are equally vital for maintaining the security of containerized
environments. Proper access control ensures that only authorized users and entities can interact
with containers and their resources. Access control policies, such as Role-Based Access Control
(RBAC) and Attribute-Based Access Control (ABAC) enable fine grained control over
permissions, preventing unauthorized access or tampering with critical components.
In addition to isolation and access control, network security solutions are imperative to protect
containerized environments. Containers rely on networking capabilities to communicate with other
services, both within and outside the container ecosystem. Runtime security mechanisms must
provide robust network segmentation techniques to prevent unauthorized access, ensure secure
communication between containers, and protect against network-based attacks, such as Man-In-
The-Middle (MITM) or Denial-of-Service (DoS) attacks. Monitoring and auditing tools are
essential components of runtime security, enabling real-time threat detection, incident response,
and forensic analysis. These tools collect and analyse logs, metrics, and events from container
runtimes, providing insights into potential security breaches or suspicious activities. By closely
monitoring container behaviour, organizations can detect and respond to security incidents
promptly, minimizing the impact on applications and infrastructure.
1.2 Motivation
The importance of runtime security mechanisms in containerized environments extends beyond
protecting individual containers. Compromised containers can serve as a foothold for lateral
movement or launching attacks against other containers or the underlying host system. Therefore,
securing the container runtime environment is critical for maintaining the integrity and security of
the entire containerized infrastructure. Furthermore, regulatory compliance and data privacy
requirements often dictate the need for robust runtime security measures. Organizations handling
sensitive data or operating in regulated industries must implement security controls to meet
compliance standards, such as the General Data Protection Regulation (GDPR) or the Payment
Card Industry Data Security Standard (PCI DSS). Failure to address runtime security risks can
result in legal and financial repercussions, reputational damage, and loss of customer trust.

1.3 Objective of this research
The objective of this research is to provide a comprehensive analysis of runtime security
mechanisms in containerized environments. The research aims to evaluate the effectiveness,
strengths, and weaknesses of different security measures employed during the runtime of
containerized applications. By conducting an in-depth examination of container isolation
techniques, access control mechanisms, network security solutions, and monitoring tools, the
paper seeks to shed light on the significance of each security measure and their impact on the
overall security posture of containerized environments. The research also aims to identify practical

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1936

implications, challenges, and trade-offs associated with implementing runtime security
mechanisms in containerized environments. Furthermore, the paper explores emerging trends and
future directions in container runtime security, such as the integration of machine learning and
artificial intelligence techniques. By providing valuable insights and recommendations, this
research paper aims to assist practitioners and organizations in effectively securing their
containerized applications and infrastructure.
1.4 Contributions in this Paper

 A novel architecture encompassing lightweight security agents, decentralized
communication, secure channels, behaviour analysis, autonomous security enforcement,
integration with container orchestration platforms, centralized management interface, and
continuous monitoring and adaptation.

 A comprehensive analysis of the runtime security mechanisms proposed in the Secure
Mesh model.

 The Secure Mesh model as a solution for mitigating runtime security challenges.

 A practical guidance for the deployment architecture and integration with existing
container orchestration platforms.

2 LITERATURE SURVEY
In this section, it was reviewed and analysed the existing research and publications related to
runtime container security, identifying key insights and trends in the field.
Pothula et al. (2019) emphasized the importance of container security in modern software
development. They argue that runtime container security is crucial for protecting containerized
applications during execution, considering the unique security challenges associated with
container environments. To address these challenges, the authors propose a model called the
Security Control Map. This model aims to provide a systematic approach to enhance runtime
container security by identifying, implementing, and managing security controls. The Security
Control Map consists of components such as threat models, security controls, and security control
objectives, which interact to create a structured framework for container security. The authors
highlight the significance of control mapping, aligning security controls with specific threat
models and control objectives. They discuss the implementation and hardening aspects, including
layered defence measures such as container isolation, access control, monitoring, and vulnerability
management. The benefits of adopting the Security Control Map model include improved security
posture, enhanced threat detection and response capabilities, and adherence to industry best
practices. However, the authors acknowledge the potential challenges and implications of
implementing and managing the proposed model. Overall, the article provides insights into the
importance of runtime container security and presents the Security Control Map model as a
valuable approach for enhancing container security [1].
Sengupta et al., (2021) presented the main arguments regarding the accessible hardening of Docker
containers to enhance security. They emphasize the need for robust security measures in
containerized environments and introduce the Metapod framework as a solution. The framework
provides accessible and practical methods for container hardening, addressing vulnerabilities and

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1937

mitigating risks. The authors highlight the importance of secure configuration, isolation, and
runtime protection techniques, demonstrating how the Metapod framework enables enhanced
security for Docker containers [2].
Viktorsson et al. (2020) explored the trade-offs between security and performance in Kubernetes
container runtimes. They investigate the impact of different container runtimes, such as Docker,
containerd, and CRI-O, on security and performance metrics. The authors emphasize the need for
balancing these factors to ensure efficient operations while maintaining robust security measures.
The article provides valuable insights into the considerations and implications of selecting
container runtimes in Kubernetes environments, assisting practitioners in making informed
decisions regarding security-performance trade-offs [3].
Another research addressed the need for improved container security by preventing runtime
escapes, which could lead to unauthorized access or privilege escalation. The authors propose a
range of security measures, including secure container configuration, isolation mechanisms, and
runtime protection techniques. They discuss the implementation of these measures, such as
leveraging container security technologies like seccomp and AppArmor, as well as employing
secure kernel configurations. Through experimental evaluations and real-world use cases, they
demonstrate the effectiveness of these measures in enhancing container security and preventing
runtime escapes [4].
Another comprehensive survey by [5] focuses on container technologies specifically designed for
the ARM architecture. The authors delve into the details of various containerization solutions,
including Docker, LXC/LXD, and systems-nspawn, optimized for ARM-based systems. They
analyze the architectural considerations, performance characteristics, and security features of these
technologies. Additionally, they explore emerging containerization frameworks specifically
developed for ARM, such as balena Engine and Buildroot. The survey provides valuable insights
into the state-of-the-art container technologies tailored for ARM architecture, enabling
practitioners to make informed decisions in adopting containerization on ARM-based platforms
[5].
A framework “CapExec” focused on transparently sandboxing services within containers. They
propose the integration of capabilities-based security mechanisms into containerization
technologies to enhance service-level isolation. The authors present the architectural design and
implementation details of CapExec, which includes components such as the capability allocator,
the container supervisor, and the capability-aware runtime. Through experimental evaluations,
they demonstrate the effectiveness of CapExec in providing secure execution environments for
services within containers, preventing potential security breaches and minimizing the attack
surface [6].
Another researcher proposed a container-based virtualization approach for energy-efficient
workflow scheduling in Software-Defined Data Centers (SDDCs). The authors investigate the
dynamic allocation of containers based on the resource requirements of workflows, aiming to
minimize energy consumption while meeting application performance targets. They discuss the
design and implementation of the proposed framework, which incorporates workload

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1938

characterization, resource management policies, and dynamic container scaling techniques.
Through simulation-based experiments, they evaluate the energy efficiency achieved by their
approach compared to traditional virtual machine-based solutions, demonstrating significant
energy savings while maintaining workflow performance requirements [7].
 [8] Present Coda, a runtime detection technique for identifying application-layer CPU-exhaustion
Denial-of-Service (DoS) attacks within container environments. They propose a combination of
statistical and behavioural analysis techniques to monitor CPU utilization patterns and detect
anomalies that indicate potential CPU - exhaustion DoS attacks. The authors provide an in-depth
discussion of the detection algorithm and its implementation, which involves analysing resource
usage metrics, monitoring container behaviours, and dynamically adapting detection thresholds.
Through extensive experiments, they evaluate the effectiveness of Coda in detecting and
mitigating application layer CPU - exhaustion DoS attacks, enhancing the security and availability
of containerized applications [8].
A Self-Patch mechanism is designed by [9] to enable containerized applications to apply security
patches beyond the traditional Patch Tuesday cycle. The authors address the challenge of timely
patching in container environments by leveraging automated patch management techniques. They
present the architecture and implementation details of Self-Patch, which includes components such
as vulnerability scanners, patch repositories, and patch management agents. The authors discuss
the integration of Self-Patch with container orchestration platforms, emphasizing its ability to
automatically identify vulnerable containers, retrieve and apply appropriate patches, and validate
the patching process. Through real-world experiments and evaluations, they demonstrate the
effectiveness of Self-Patch in ensuring the security of containerized applications by promptly
addressing known vulnerabilities [9].
A honeypot based approach by [10] focuses on the implementation of a containerized cloud-based
honeypot deception system for tracking potential attackers. The authors leverage container
technology to deploy and manage honeypots, which simulate vulnerable systems to attract and
monitor malicious activities. They discuss the architecture and implementation details of the
containerized honeypot system, including the deployment of multiple honeypot instances, traffic
analysis, and data collection mechanisms. Through real-world experiments and analysis, they
demonstrate the effectiveness of containerization in enabling scalable and efficient honeypot
deployment, aiding in the tracking and identification of potential threats.
Finally it is inferred that the Runtime security is a critical requirement in container-based
environments, as supported by corroborating facts from the literature. Containers are prone to
vulnerabilities that can be exploited for unauthorized access or privilege escalation. Their dynamic
nature necessitates continuous monitoring and protection throughout their lifecycle. Runtime
security is crucial to prevent container escapes and enforce isolation in shared kernel
environments. With an evolving threat landscape, runtime security mechanisms like behaviour
analysis and real-time monitoring are essential to detect and respond to emerging threats.
Compliance obligations and operational impacts further emphasize the need for robust runtime
security measures that safeguard sensitive data, ensure smooth operations, and maintain

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1939

performance. Overall, implementing comprehensive runtime security is vital to protect
containerized applications and infrastructure from security risks, vulnerabilities, and operational
disruptions.
In comparison to the state of the art, the Secure Mesh model offers a more dynamic, collaborative,
and resilient approach to runtime container security. Its ability to detect threats in real time through
distributed intelligence, its decentralized architecture for enhanced security, its seamless
integration with existing container orchestration platforms, and its use of cryptographic techniques
to ensure integrity collectively contribute to making Secure Mesh a compelling choice for securing
containerized applications. The model's adaptability, responsiveness, and ability to maintain
security in the face of compromise position it as an innovative and advantageous solution in the
evolving landscape of container security.
3 SECURE MESH: THE PROPOSED APPROACH

The Secure Mesh model adopts a self-organizing network of security agents running on each
container host, forming a distributed security layer that collaboratively monitors and protects
containerized applications. Each security agent employs machine learning algorithms and
behaviour analysis to detect anomalies and suspicious activities, ensuring real-time threat detection
and response. Figure 1 shows the architecture of normal container automation without any runtime
security mechanism.
Through dynamic peer-to-peer communication, security agents exchange threat intelligence and
collectively make decisions on security policies, enabling adaptive and autonomous security
enforcement. This decentralized architecture eliminates single points of failure and reduces the
impact of compromised containers or hosts. The Secure Mesh model also integrates with existing
container orchestration platforms, leveraging their capabilities for container deployment, scaling,
and management. By incorporating security agents at the host level, the model can transparently
secure containers without requiring modifications to the application code or container images.
Additionally, the Secure Mesh model incorporates cryptographic techniques, such as secure
communication channels and container image signing, to ensure integrity and authenticity across
the distributed security layer. These cryptographic measures provide an additional layer of
protection against malicious tampering and unauthorized access.
The benefits of the Secure Mesh deployment model are manifold. It enhances runtime security by
leveraging distributed intelligence, adaptability, and resilience. The decentralized architecture
improves scalability, as the security layer dynamically adjusts to the size and complexity of the
container environment. Furthermore, the model reduces the overhead of centralized security
management and minimizes the performance impact on containerized applications.
3.1 Secure Mesh Deployment Model
The Secure Mesh deployment model leverages decentralized and distributed mesh network
architecture to enhance runtime security in containerized environments. This model introduces a
self-organizing network of security agents running on each container host, forming a distributed
security layer that collaboratively monitors and protects containerized applications.

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1940

Figure 1 Architecture of Normal Container Automation without Runtime Security

3.2 Process Involved

 Deployment: Each container host is equipped with a security agent responsible for
monitoring the containerized applications running on the host. These security agents operate
autonomously and communicate with each other through a dynamic peer-to-peer network.

 Distributed Security Layer: The security agents collectively form a distributed security
layer, ensuring real-time threat detection and response. By sharing threat intelligence and
behaviour analysis insights, they collaboratively make decisions on security policies and
enforcement actions.

 Anomaly Detection: The security agents employ machine learning algorithms and
behaviour analysis techniques to detect anomalies and suspicious activities within the
containerized applications. These algorithms continuously learn and adapt to evolving threats,
enabling effective detection of known and unknown security risks.

 Adaptive Security Enforcement: Based on the detected anomalies and shared
intelligence, the security agents autonomously enforce security measures, such as isolating

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1941

compromised containers, blocking malicious network traffic, or alerting administrators about
potential threats. This adaptive and autonomous security enforcement reduces the impact of
compromised containers or hosts and ensures timely response to security incidents.

 Integration with Container Orchestration Platforms: The Secure Mesh deployment
model seamlessly integrates with existing container orchestration platforms, leveraging their
capabilities for container deployment, scaling, and management. By incorporating security agents
at the host level, the model can transparently secure containers without requiring modifications to
the application code or container images.

3.3 Deployment of the Secure Mesh Deployment Model

 Deployment on Container Hosts: The security agents are deployed on each container host
within the environment. This can be achieved by installing and configuring the security agent
software as part of the host's initialization process.

 Dynamic Peer-to-Peer Communication: The security agents establish dynamic peer-to-
peer communication channels, enabling them to exchange threat intelligence, share behavioural
analysis insights, and collectively make decisions on security policies. This communication is
typically secured using cryptographic techniques to ensure confidentiality and integrity.

 Integration with Container Orchestration Platforms: The security agents seamlessly
integrate with container orchestration platforms, such as Kubernetes, Docker Swarm, or Apache
Mesos. They leverage the platform's capabilities for container deployment, scaling, and
management, while providing an additional layer of runtime security.

 Configuration and Policy Management: Administrators can configure and manage
security policies through a centralized management interface. This interface allows administrators
to define rules, thresholds, and security measures that guide the behaviour of the security agents.

3.4 Benefits of the Secure Mesh Deployment Model

 Enhanced Threat Detection: By leveraging distributed intelligence and behaviour
analysis, the Secure Mesh model improves the detection of anomalies and suspicious activities
within containerized applications, enhancing the overall threat detection capabilities.

 Scalability and Adaptability: The decentralized architecture of the Secure Mesh model
enables it to scale seamlessly with the size and complexity of the container environment. As new
hosts or containers are added, the security agents autonomously join the network, ensuring
continuous protection without centralized bottlenecks.

 Reduced Overhead: The Secure Mesh model minimizes the overhead of centralized
security management by distributing security intelligence and enforcement across multiple agents.
This reduces the performance impact on containerized applications and improves resource
utilization.

3.5 Architecture: Secure Mesh Deployment Model
The Secure Mesh deployment model's security agent architecture consists of lightweight, modular
components that can run on each container host, minimizing resource overhead and ensuring
compatibility with different container runtimes and operating systems. The architecture facilitates

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1942

a decentralized peer-to-peer network among the security agents, enabling secure communication
and collaboration for exchanging threat intelligence and behaviour analysis insights. Robust
encryption protocols and authentication mechanisms should be incorporated to maintain secure
communication channels, ensuring confidentiality and integrity of exchanged information.
Machine learning algorithms and behaviour analysis techniques is integrated to detect anomalies
and suspicious activities within containerized applications, leveraging data from container
runtimes, host systems, and network traffic. The architecture enables autonomous security
enforcement, empowering security agents to make local decisions based on detected anomalies
and shared threat intelligence, resulting in real-time response to security incidents. Seamless
integration with container orchestration platforms, such as Kubernetes or Docker Swarm, is
facilitated, leveraging their capabilities for container deployment, scaling, and management, while
ensuring compatibility and interoperability. A centralized management interface is included, thus
allowing administrators to configure and manage security policies, define rules and thresholds,
and monitor the security status of the containerized environment. Continuous monitoring of the
environment is supported, collected and analyzed the data from various sources to improve threat
detection and response, while incorporating feedback and lessons learned to adapt and enhance
security measures over time.

Figure 2 Architecture of Secure Mesh Deployment Model

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1943

Figure 2 shows the integrated architecture of the runtime security components (security agents and
intrusion detection & prevention) into the container orchestration platform's existing
infrastructure, enabling seamless security monitoring and protection within the containerized
environment. The container orchestration platform (e.g., Kubernetes) remains the foundation of
the architecture, providing container management and orchestration capabilities. The API server
facilitates communication between the orchestration platform and the worker nodes. Worker nodes
represent the individual machines in the cluster responsible for running containers. Each worker
node hosts multiple containers within container hosts. Each container host has a security agent
installed, responsible for monitoring and protecting the containers running on that host. The
security agents continuously monitor the containers for security threats and anomalies, leveraging
intrusion detection and prevention techniques. The security agents communicate with each other
to share threat intelligence and collaborate on security decision-making. A log collector is
responsible for collecting and storing logs generated by the security agents and other components
in the environment. The management interface provides administrators with centralized control
over the security policies, monitoring, and management of the containerized environment.

4 EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

The evaluation of the proposed architecture for runtime security in containerized environments
involved a series of experiments conducted on a realistic testbed. The experimental setup consists
of the following components and configurations:

 Infrastructure: A cluster of five machines was set up using Amazon EC2 instances. Each
machine featured 4 CPU cores, 8GB RAM, and ran Ubuntu 20.04 as the Operating System. The
machines were connected via a private network to ensure secure communication.

 Container Orchestration Platform: Kubernetes version 1.21 was deployed as the
container orchestration platform. The cluster comprised one master node and four worker nodes.
The master node manages the cluster's resources and operations, while the worker nodes hosts the
containers.

 Containerized Applications: A set of representative containerized applications was
selected to simulate real-world scenarios. These applications include web servers, databases, and
microservices. Docker was utilized to containerize the applications, which were then deployed
within the Kubernetes cluster.

 Security Agent Deployment: Falco version 0.28 was installed as the security agent on
each worker node is in the Kubernetes cluster. Falco was configured with predefined rules and
policies to detect common security threats and suspicious behaviours within the containers. The
security agents communicated securely with each other and the central components using
Transport Layer Security (TLS) with mutual authentication.

 Log Collection and Analysis: The ELK stack was employed for log collection and
analysis. Elasticsearch version 7.13 served as the distributed search and analytics engine, while
Logstash version 7.13 was responsible for log parsing and enrichment. Kibana version 7.13

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1944

provided the graphical interface for log visualization and analysis. Logstash received logs from
the Falco security agents and forwarded them to Elasticsearch for storage and indexing.

 Monitoring and Alerting: Prometheus version 2.28 was deployed for monitoring the
containerized environment. Prometheus collects and stores time-series data related to container
metrics, security agent logs, and system-level metrics. Grafana version 8.0 was used to create real-
time dashboards and set up alerts based on predefined thresholds. The dashboards provide
visibility into the security status, container performance, and system health.

 Experimental Scenarios: Multiple experimental scenarios were designed to assess the
effectiveness of the runtime security architecture. These scenarios encompassed simulated attacks,
abnormal behaviours, and system performance degradation. Varying intensities and complexities
were applied to evaluate the security agents' detection and response capabilities to different types
of threats.

 Data Collection: Throughout the experiments, various metrics were collected, including
CPU and memory utilization, network traffic, security alerts, and system logs. These metrics were
instrumental in evaluating the performance, security efficacy, and operational stability of the
deployed architecture.

The experiments spanned a two-week period, with continuous monitoring and data collection. The
collected data underwent analysis to evaluate the architecture's effectiveness in detecting and
mitigating security threats, its impact on system performance, and the overall operational stability
of the containerized environment.
4.1 Realtime Implementations
The proposed architecture was implemented in a real-time deployment to secure the containerized
environment. Kubernetes was chosen as the container orchestration platform, providing robust
container management and orchestration capabilities. The Kubernetes API server facilitated
communication between the components. Multiple worker nodes were provisioned using Amazon
EC2 instances, with Docker installed as the container runtime environment on each node.
To ensure runtime security, Falco was deployed as the security agent on each container host. Falco
leveraged Linux kernel instrumentation to monitor and detect abnormal behaviours within
containers in real-time. Custom rules and policies were configured in Falco to detect and prevent
security threats, including unauthorized access, file system changes, privilege escalation, and
network anomalies.
For log collection and analysis, the ELK stack consisting of Elasticsearch, Logstash, and Kibana
was deployed. The security agents were configured to send their logs to Logstash, which parsed
and enriched the logs before forwarding them to Elasticsearch for storage and indexing. Kibana
provided a user-friendly interface for visualizing and analysing the collected logs, enabling
effective security incident investigation and auditing.
The Kubernetes dashboard serves as the centralized management interface, allowing
administrators to configure security policies, monitor the security status, and manage the
containerized environment. Secure communication channels were established using Transport

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1945

Layer Security (TLS) with mutual authentication using certificates, ensuring secure and
authenticated communication between the components.
Integration with Kubernetes was achieved by deploying Falco as a DaemonSet, ensuring its
presence on each worker node in the cluster. This integration allowed Falco to seamlessly monitor
the containers and their activities within the Kubernetes environment.
To enable continuous monitoring and adaptation, Prometheus was implemented as the monitoring
and alerting solution. Prometheus collected time-series data related to container metrics, security
agent logs, and system-level metrics. Grafana was utilized to create real-time dashboards and set
up alerts based on predefined thresholds, enabling proactive monitoring and response to security
incidents.
The real-time implementation of the proposed architecture successfully integrated Kubernetes,
Falco, the ELK stack, and Prometheus, achieving comprehensive runtime security for the
containerized environment (See Figure 3). The proposed implementation provides real-time threat
detection, centralized log collection and analysis, efficient management, secure communication,
and continuous monitoring, enhancing the overall security posture of the containerized
infrastructure.

a) Traffic Visualization with respect to Different Geography

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1946

b) Logs and Traffic Visualization

c) Traffic Visualization (protocols)

Figure 3 Screenshot of ELK Stack Displaying the Results of Network Security Monitoring
Tool (Zeek)

5 RESULTS AND DISCUSSION

The ELK stack, comprising Elasticsearch, Logstash, and Kibana as shown in Figure 3, effectively
display the outcomes of the Zeek network security monitoring tool. Figure 3a shows the context

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1947

of traffic visualization across diverse geographies, empowers robust insights: it generates
geographical heatmaps, exposing traffic density and congestion, overlaying data onto maps to
swiftly pinpoint high traffic zones and bottlenecks. Logstash is configured to collect and parse
Zeek logs, which are then indexed in Elasticsearch with appropriate field mappings. Leveraging
Kibana, one can explore the raw Zeek data in the "Discover" tab, create visualizations like bar
charts and line charts to represent key aspects of network traffic and potential security events,
compile these visualizations into insightful dashboards, and even establish alerts for specific
conditions detected within the Zeek data, providing a comprehensive and actionable view of
network security posture and threats.

6 CONCLUSION

In this research, it is presented a comprehensive analysis of runtime security mechanisms for
containerized environments. This proposed an architecture that integrates security agents,
container orchestration platforms, and monitoring tools to enhance the security posture of
containerized applications. Through the real-time implementation and experimental evaluation,
were demonstrated the effectiveness of the architecture in detecting and preventing security
threats, ensuring the integrity and availability of containerized environments. This research
highlighted the importance of runtime security in container orchestration platforms and the need
for robust security mechanisms to protect against evolving threats. By deploying lightweight
security agents on container hosts, it was enabled real-time monitoring and detection of security
anomalies, leveraging intrusion detection and prevention techniques. The integration of a
decentralized peer-to-peer network among the security agents facilitated efficient communication
and collaboration for exchanging threat intelligence and behaviour analysis insights. Secure
communication channels, enables the robust encryption protocols and authentication mechanisms,
and ensured the confidentiality and integrity of the exchanged information.
From Figure 3 it is clearly inferred that the adoption of machine learning algorithms which are
available in ELK and behaviour analysis techniques enhanced the security agents' capabilities,
enabling the detection of anomalies and suspicious activities within containerized applications.
The autonomous security enforcement allowed for real-time response to security incidents,
minimizing the reliance on centralized decision-making. The seamless integration with container
orchestration platforms provides a scalable and manageable solution for deploying and managing
secure containers. The centralized management interface offers administrators a user-friendly
platform to configure security policies, monitor the security status, and manage the containerized
environment effectively.
Future research directions may include the exploration of advanced machine learning techniques
for anomaly detection, the development of adaptive security mechanisms based on runtime
behavioural analysis, and the investigation of security considerations in emerging container
orchestration technologies.

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1948

REFERENCES
1. D. R. Pothula, K. M. Kumar and S. Kumar, "Run Time Container Security Hardening
Using A Proposed Model Of Security Control Map," 2019 Global Conference for Advancement
in Technology (GCAT), Bangalore, India, 2019.
2. R. Sengupta, R. S. Sai Prashanth, Y. Pradhan, V. Rajashekar and P. B. Honnavalli,
"Metapod: Accessible Hardening of Docker Containers for Enhanced Security," 2021 IEEE
International Conference on Electronics, Computing and Communication Technologies
(CONECCT), Bangalore, India, 2021, pp. 01-06.
3. W. Viktorsson, C. Klein and J. Tordsson, "Security-Performance Trade-offs of Kubernetes
Container Runtimes," 2020 28th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), Nice, France, 2020, pp. 1-4.
4. M. Reeves, D. J. Tian, A. Bianchi and Z. B. Celik, "Towards Improving Container Security
by Preventing Runtime Escapes," 2021 IEEE Secure Development Conference (SecDev), Atlanta,
GA, USA, 2021, pp. 38-46.
5. S. Kaiser, M. S. Haq, A. Ş. Tosun and T. Korkmaz, "Container Technologies for ARM
Architecture: A Comprehensive Survey of the State-of-the-Art," in IEEE Access, vol. 10, pp.
84853-84881, 2022.
6. M. S. Jadidi, M. Zaborski, B. Kidney and J. Anderson, "CapExec: Towards Transparently-
Sandboxed Services," 2019 15th International Conference on Network and Service Management
(CNSM), Halifax, NS, Canada, 2019, pp. 1-5.
7. R. Ranjan, I. S. Thakur, G. S. Aujla, N. Kumar and A. Y. Zomaya, "Energy-Efficient
Workflow Scheduling Using Container-Based Virtualization in Software-Defined Data Centers,"
in IEEE Transactions on Industrial Informatics, vol. 16, no. 12, pp. 7646-7657, Dec. 2020.
8. M. Zhan, Y. Li, H. Yang, G. Yu, B. Li and W. Wang, "Coda: Runtime Detection of
Application-Layer CPU-Exhaustion DoS Attacks in Containers," in IEEE Transactions on
Services Computing, vol. 16, no. 3, pp. 1686-1697, 1 May-June 2023.
9. O. Tunde-Onadele, Y. Lin, J. He and X. Gu, "Self-Patch: Beyond Patch Tuesday for
Containerized Applications," 2020 IEEE International Conference on Autonomic Computing and
Self-Organizing Systems (ACSOS), Washington, DC, USA, 2020, pp. 21-27.
10. Devi Priya V S, Sibi Chakkaravarthy Sethuraman, “Containerized cloud-based honeypot
deception for tracking attackers”, Scientific Reports, Nature, 13, Article number: 1437, 2023.
11. Z. Wang, J. Wang, Z. Wang and Y. Hu, "Characterization and Implication of Edge
WebAssembly Runtimes," 2021 IEEE 23rd Int Conf on High Performance Computing &
Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int
Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), Haikou, Hainan, China, 2021, pp. 71-80.
12. M. Kumar and G. Kaur, "Containerized AI Framework on Secure Shared Multi-GPU
Systems," 2022 Seventh International Conference on Parallel, Distributed and Grid Computing
(PDGC), Solan, Himachal Pradesh, India, 2022, pp. 243-247.

SECURING CONTAINERIZED ENVIRONMENTS: A COMPREHENSIVE ANALYSIS OF RUNTIME SECURITY MECHANISMS

ISSN:1539-1590 | E-ISSN:2573-7104
Vol. 5 No. 2 (2023)

© 2023The Authors

1949

13. T. Goethals, F. De Turck and B. Volckaert, "Extending Kubernetes Clusters to Low-
Resource Edge Devices Using Virtual Kubelets," in IEEE Transactions on Cloud Computing, vol.
10, no. 4, pp. 2623-2636, 1 Oct.-Dec. 2022.
14. Y. Li, J. Zhang, C. Jiang, J. Wan and Z. Ren, "PINE: Optimizing Performance Isolation in
Container Environments," in IEEE Access, vol. 7, pp. 30410-30422, 2019.
15. Y. Fu, W. Han and D. Yuan, "Orchestrating Heterogeneous Cyber-range Event Chains
With Serverless-container Workflow," 2022 30th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Nice,
France, 2022, pp. 97-104.
16. Randazzo and I. Tinnirello, "Kata Containers: An Emerging Architecture for Enabling
MEC Services in Fast and Secure Way," 2019 Sixth International Conference on Internet of
Things: Systems, Management and Security (IOTSMS), Granada, Spain, 2019, pp. 209-214
17. J. Pinnamaneni, N. S and P. Honnavalli, "Identifying Vulnerabilities in Docker Image Code
using ML Techniques," 2022 2nd Asian Conference on Innovation in Technology (ASIANCON),
Ravet, India, 2022.

